idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/12/2018 17:01

Erste Beweise für Quelle extragalaktischer Teilchen

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

    Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und Blazar-Experten Paolo Padovani von der Europäischen Südsternwarte (ESO) eine 1,33 Grad große Himmelsregion um die Position, aus deren Richtung am 22. September 2017 ein hochenergetisches Neutrino in den IceCube-Detektor eingeschlagen war.

    Als Quelle dieses Neutrinos hatte eine internationale Kooperation, an der auch Resconi beteiligt ist, einen Blazar mit der Katalognummer TXS 0506+056 ausgemacht, das ist eine aktive Galaxie, deren Jet hochenergetischer Teilchen direkt in Richtung Erde zeigt. „Es ist eines der hellsten und eigentümlichsten Objekte, das jemals beobachtet wurde“, sagt Elisa Resconi.

    Viele Konkurrenzobjekte im „Open Universe“

    Die Forschergruppe um Resconi und Padovani nutzte für ihre Arbeit erstmals die frei zugänglichen Archiv-Daten von „Open Universe“, einer Initiative unter der Schirmherrschaft des Büros der Vereinten Nationen für Weltraumfragen, die von Paolo Giommi, Hans-Fischer-Senior-Fellow am TUM Institute for Advanced Study, ins Leben gerufen wurde.

    Mit einer speziell hierfür entwickelten Software durchkämmten sie die Daten von zahlreichen Teleskopen und charakterisierten die Signale. Tatsächlich fanden sie zunächst 637 Objekte, darunter auch sieben Blazar-artige, von denen das IceCube-Neutrino stammen könnte. Anschließend nahmen sie diese genauer unter die Lupe.

    TUM-Team liefert entscheidenden Beitrag

    Nach sorgfältiger Analyse blieb nur noch ein Konkurrenz-Blazar übrig. Dieser war dem Team insbesondere für den Zeitraum von September 2014 bis März 2015 als starke Quelle hochenergetischer Gamma-Strahlung aufgefallen. In dieser Zeit hatte IceCube weitere Neutrinos aus Richtung TXS 0506+056 detektiert, wie eine nachträgliche Untersuchung aller bisherigen IceCube-Neutrinos seit 2008 offenbart hatte.

    „Wir konnten aber schließlich zeigen, dass das Strahlungsprofil von TXS 0506+056 perfekt zu den Energien der Neutrinos passt, so dass wir alle anderen Quellen und insbesondere den Hauptkonkurrenten ausschließen konnten“, sagt Paolo Padovani.

    Neutrinos sind einzigartige kosmische Boten

    Resconi, Padovani und Giommi waren im Jahr 2017 die ersten Wissenschaftler, die eine Beziehung zwischen hochenergetischen IceCube-Neutrinos und Blazaren herzustellen versuchten. „Nun können wir einen entscheidenden Beitrag zum Nachweis liefern, dass Blazare die Quellen kosmischer Neutrinos sind“, sagt Elisa Resconi.

    Das Ende einer mehr als hundert Jahre dauernden Suche nach den Herkunftsorten hochenergetischer kosmischer Teilchen markiert für Elisa Resconi gleichzeitig einen neuen Anfang: „In Zukunft wissen wir nun besser, wonach wir suchen müssen“. Neutrinos sind dabei die einzigen kosmischen Boten, mit denen die höchstenergetischen Phänomene im Universum untersucht werden können.

    Die aufwändige Suche nach den flüchtigen Teilchen

    Neutrinos sind jedoch extrem flüchtige Teilchen. Da sie kaum mit anderer Materie wechselwirken, passieren sie praktisch jede Art von Materie ungehindert. Der IceCube-Detektor im Südpol-Eis ist daher mit einem Volumen von einem Kubikkilometer zwar der größte Detektor weltweit, aber immer noch zu klein: Seit 2013 sind bisher nur 82 höchstenergetische Neutrinos in das IceCube-Eis eingeschlagen.

    Daher arbeitet Elisa Resconi am Design eines über die Erde verteilten Netzwerks an Neutrino-Teleskopen. Das Ziel: Die Zahl der detektierten Neutrinos so zu erhöhen, dass Wissenschaftler mit ihnen echte Astronomie betreiben können – und in Kombination mit den anderen astronomischen Informationsquellen, elektromagnetischen Wellen und Gravitationswellen, viele bislang noch unverstandene Phänomene des Universums zu erforschen.

    Neues Neutrino-Projekt der TUM im Pazifik

    Ende Juni hat Resconis TUM-Team außerdem ein ganz neues Projekt erfolgreich auf den Weg gebracht: Im nordöstlichen Pazifik wurden gerade zwei 150 Meter lange Drahtseile mit insgesamt acht Detektoren in 2700 Meter Tiefe auf dem Meeresgrund befestigt.

    „Sollte der Standort geeignet sein, könnte man dank der vorhandenen Infrastruktur darüber nachdenken, wie dort in relativ kurzer Zeit ein komplettes Neutrino-Teleskop installiert werden könnte“, sagt Elisa Resconi. „Ein Neutrino-Teleskop im Pazifik würde IceCube und die nächste Generation von IceCube am Südpol perfekt ergänzen.“

    Weitere Informationen:

    Das Neutrino-Teleskop IceCube wird im Wesentlichen von der National Science Foundation (NSF), USA, finanziert. Betrieben wird es unter der Federführung der University of Wisconsin-Madison.

    Zum Bau von IceCube trugen daneben folgende Institutionen bei: der Nationalfonds für wissenschaftliche Forschung (FNRS & FWO), Belgien; das Bundesministerium für Bildung und Forschung (BMBF) und die Deutsche Forschungsgemeinschaft (DFG), Deutschland; die Knut-und-Alice-Wallenberg-Stiftung, das Schwedische Polarforschungssekretariat und der Schwedische Forschungsrat, Schweden; das Department of Energy und der Forschungsfonds der University of Wisconsin-Madison, USA.

    Im Rahmen der IceCube-Kollaboration arbeiten rund 300 Wissenschaftler aus 49 Institutionen in 12 Ländern zusammen. In Deutschland sind beteiligt: RWTH Aachen, Humboldt-Universität zu Berlin, Ruhr-Universität Bochum, TU Dortmund, Universität Erlangen-Nürnberg, Universität Mainz, Universität Münster, Technische Universität München und Universität Wuppertal. Das Forschungsprogramm von IceCube wird in Deutschland finanziert vom BMBF, der Helmholtz Gesellschaft, der DFG sowie mit weiteren Mitteln der beteiligten Institutionen.

    Die interdisziplinäre Zusammenarbeit der Forschungsgruppe zwischen Elisa Resconi (TUM) und Paolo Padovani (ESO) wurde initiiert durch den Exzellenzcluster „Ursprung und Struktur des Universums“ (EXC153), finanziert von der DFG.

    Das Projekt von Elisa Resconi im nordöstlichen Pazifik wurde durchgeführt in Zusammenarbeit mit Ocean Networks Canada, einer Initiative der University of Victoria, Kanada, und finanziert von der DFG über den Exzellenzcluster Universe und den Sonderforschungsbereich 1258 „Neutrinos und Dunkle Materie in Astro- und Teilchenphysik“, deren Initiatorin und Sprecherin Elisa Resconi ist.


    Contact for scientific information:

    Prof. Dr. Elisa Resconi
    Technische Universität München
    Professur für Experimentalphysik mit kosmischen Teilchen
    Sonderforschungsbereich 1258
    E-Mail: elisa.resconi@tum.de
    Tel.: +49 89 289 12422

    Dr. Paolo Padovani
    Europäische Südsternwarte
    E-Mail: ppadovan@eso.org
    Tel.: +49 89 32006478

    Dr. Paolo Giommi
    Hans Fischer Senior Fellow
    Technische Universität München
    Institute for Advanced Study (IAS)
    E-Mail: paolo.giommi@ssdc.asi.it


    Original publication:

    IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, HESS, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA: Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, 12 July 2018, DOI: 10.1126/science.aat1378
    Link: http://science.sciencemag.org/cgi/doi/10.1126/


    More information:

    https://mediatum.ub.tum.de/1448533
    http://Dieser Text im Web:
    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34811/


    Images

    Das IceCube Lab am Südpol unter den Sternen.
    Das IceCube Lab am Südpol unter den Sternen.
    Martin Wolf, IceCube/NSF
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research projects, Research results
    German


     

    Das IceCube Lab am Südpol unter den Sternen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).