idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/16/2019 14:46

Publication from Münster University researchers in Paper-of-the-year list of "Optics&Photonics New

Dr. Kathrin Kottke Presse- und Informationsstelle
Westfälische Wilhelms-Universität Münster

    By now, it is almost a tradition at the Institute of Applied Physics of the University of Münster: Like in the previous years, a research project of the team of Prof. Cornelia Denz has been selected by the well-known journal "Optics & Photonics News" for the list of the 30 best publications of the year. This unique appreciation for excellent research in the fields of optics and photonics traditionally is announced at the end of the year within in a special issue of the journal.

    The renowned Journal "Optics & Photonics News" selected a publication of the Team of Prof. Cornelia Denz into the worldwide list of the 30 best publications in the year 2018. The Journal traditionally highlights these publications from optics and photonics in a special edition in December. An expert jury reviewed a total of 113 international studies from the past twelve months selecting the best and most influential contributions. In the last year, the Nonlinear Photonics group of the University of Münster joined the list with two publications.

    The past year’s highlighted publication, the discovery of Dr. Robert Meissner and Dr. Neus Oliver from the “Nonlinear Photonics” team is honoured. They used nobel-awarded optical tweezers for trapping of cylinder-like nanocontainer crystals. Optical tweezers are focused laser beams that allow to grab, fix and move micro- and nanoscale objects just by light, without physically touching them. The nanocontainers that have now been employed by the Denz group are porous and contain nanometre spaced channels. This makes them ideally suited for functionalizing nano survaces or to transport medical agents into organs or cells. While up to now only spherical beads have been implemented for force metrology in optical tweezers, measuring tiny forces as they are present on nanosurfaces or in the inner cells, the scientists proved that these nanocontainers can be employed as advanced force sensing probes, too. They discovered that it is important to quantify the rotation of the nanocontainers within the trap by actively “shaking” it. At the same time they showed that deviations from the ideal probe shape, e.g., due to shape defects, lead to an increase of the effective optical forces. Since these deviations can be detected by video microscopy, they allow users to select appropriate nanocontainers which are most suitable for the applications in consideration. The findings are an important step in nanoscale force metrology and will foster sensing cell forces and viscoelasticity which are vital biophysical indications of cancer, Alzheimer and vascular diseases. The original work was published in March this year in the international Journal "Particle & Particle Systems Characterisation".


    Contact for scientific information:

    Prof. Dr. Cornelia Denz
    Tel. +49 251 83 33517
    denz@uni-muenster.de


    Original publication:

    R. Meissner, N. Oliver and C. Denz, „Optical Force Sensing with Cylindrical Microcontainers”. Part. Part. Syst. Charact. 1800062 (2018). doi.org/10.1002/ppsc.201800062

    December edition of Optics & Photonics News: Optics in 2018
    https://www.osa-opn.org/home/articles/volume_29/december_2018/features/optics_in...


    Images

    Optical tweezer
    Optical tweezer
    AG Nichtlineare Photonik - Pascal Runde
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Scientific Publications
    English


     

    Optical tweezer


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).