idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/28/2019 11:19

Interview with Dr. Eve Stenson on the delicate antiparticles of electrons: A trap for positrons

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    For the first time, scientists from the Technical University of Munich (TUM) and the Max Planck Institute for Plasma Physics (IPP) have succeeded in losslessly guiding positrons, the antiparticles of electrons, into a magnetic field trap. This is an important step towards creating a matter-antimatter plasma of electrons and positrons, like the plasmas believed to occur near neutron stars and black holes. In an interview, Dr. Eve Stenson presents her research work.

    Why do you want to lure positrons into a trap?

    Being able to capture and confine positrons is fundamental for studying what is known as electron-positron pair plasma. Such plasmas are of great interest both for the investigation of fundamental questions in plasma physics as well as in astrophysics.

    What is so difficult about catching positrons?

    Positrons are the antiparticles of electrons, they have the same properties except that they are positively instead of negatively charged. When a positron hits an electron, both instantly annihilate in a flash of light. And since there are electrons in abundance everywhere on Earth, it is extremely difficult to store positrons in such a way that they survive for at least a while.

    Fortunately, we have the most powerful positron source in the world, NEPOMUC (neutron induced positron source Munich), here in Garching, north of Munich, at the Research-Neutronsource Heinz Maier-Leibnitz (FRM II). It can produce 900 million positrons per second.

    Plasma physicists have been simulating this electron-positron plasma for 40 years. You have now come a decisive step closer to achieving it in practice. How did you do that?

    It is actually very difficult to guide charged particles such as the positive positrons into a magnetic trap. The same rules of physics that confine the particles inside this trap unfortunately also keep out the particles that are supposed to enter.

    Our trap has a magnetic field very similar to that of the Earth or other celestial bodies. We came up with the idea of briefly applying an electrical voltage to the edge of the trap to guide the positrons through the magnetic “bars”. When we then switch the voltage off again, the positrons remain trapped in the cage. It worked so well, even we were surprised.

    How long have you been able to confine the positrons?

    ... for a little more than a second. No group in the world has yet succeeded in doing this with antimatter in this type of trap.

    What are the benefits of the results for plasma physics or other areas?

    The aim of the APEX (A Positron-Electron Experiment) Group at the Max Planck Institute for Plasma Physics is to produce a matter-antimatter plasma of electrons and positrons and to confine that plasma in a magnetic cage. The first step, however, is to be able to produce and store enough positrons. The next step is to actually create and examine such plasmas.

    Astrophysics assume that such exotic plasmas occur in the vicinity of neutron stars and black holes. In terrestrial plasma physics, the symmetry of positron and electron masses is expected to lead to new findings on waves and turbulence in plasmas – findings that could help us to use nuclear fusion for power generation in the future.

    More information:

    Partner in the project were the Technical University of Munich (Germany), the Max Planck Institute for Plasma Physics, Garching and Greifswald (Germany), the Leibniz Institute of Surface Engineering (IOM), Leipzig (Germany), University of Greifswald (Germany), the University of Tokyo (Japan), University of California, San Diego (USA) and the Lawrence University, Appleton (USA).

    This project has received funding from the European Research Council (ERC), the German Research Foundation (DFG), the Helmholtz Association Postdoc Program, the UC San Diego Foundation, the Collaboration Research Program of the Japan National Institute for Fusion Science (NIFS) and the Japan Society for the Promotion of Science (JSPS).


    Contact for scientific information:

    Eve Stenson, Ph.D.

    Technical University of Munich (FRM II) and
    APEX Collaboration, MPI für Plasmaphysik,
    Garching, Germany
    eve.stenson@tum.de | evs@ipp.mpg.de
    Tel.: +49 89 3299 2522

    Prof. Dr. Christoph Hugenschmidt
    Technical University of Munich (FRM II)
    Research Group Positron Physics
    Lichtenbergstr. 1, 85748 Garching, Germany
    Tel.: +49 89 289 14609
    Christoph.Hugenschmidt@frm2.tum.de

    Link (APEX): https://www.ipp.mpg.de/3335368/pair_plasma
    Link (Research Group Positron Physics): http://www.sces.ph.tum.de/research/positron-physics/


    Original publication:

    Lossless Positron Injection into a Magnetic Dipole Trap. 
E. V. Stenson, S. Nißl, U. Hergenhahn, J. Horn-Stanja, M. Singer, H. Saitoh, T. Sunn Pedersen, J. R. Danielson, M. R. Stoneking, M. Dickmann, C. Hugenschmidt 
In: Phys. Rev. Lett. 121, 235005 – Published 5 December 2018

    DOI: https://doi.org/10.1103/PhysRevLett.121.235005

    Confinement of Positrons Exceeding 1 s in a Supported Magnetic Dipole Trap. 
J. Horn-Stanja, S. Nißl, U. Hergenhahn, T. Sunn Pedersen, H. Saitoh, E. V. Stenson, M. Dickmann, C. Hugenschmidt, M. Singer, M. R. Stoneking, and J. R. Danielson
In: Phys. Rev. Lett. 121, 235003 – Published 5 December 2018

    DOI: https://doi.org/10.1103/PhysRevLett.121.235003


    More information:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35264/ Link to the press release


    Images

    Dr. Eve Stenson uses spare parts to demonstrate the structure of the positron trap. In the prototype trap, the magnetic field is generated by a permanent magnet (center).
    Dr. Eve Stenson uses spare parts to demonstrate the structure of the positron trap. In the prototype ...
    Source: Image: Axel Griesch / IPP


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Dr. Eve Stenson uses spare parts to demonstrate the structure of the positron trap. In the prototype trap, the magnetic field is generated by a permanent magnet (center).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).