idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/12/2019 10:09

Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

    Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu analysieren, indem sie nach Mustern suchen, die auf bestimmte Objekte hindeuten. Hat das System diese Muster gelernt, erkennt es Hund oder Katze auf beliebigen Bildern.

    Nach demselben Prinzip können neuronale Netzwerke auf radiologischen Aufnahmen Veränderungen im Gewebe aufspüren. Physiker nutzen die Methode jetzt, um Momentaufnahmen von Quantensystemen zu analysieren und herauszufinden, welche Theorie die dort beobachteten Phänomene am besten beschreibt.

    Unterwegs in der Quantenwelt der Wahrscheinlichkeit

    Einige Phänomene in der Physik der kondensierten Materie, die Festkörper und Flüssigkeiten untersucht, sind noch immer voller Rätsel. Bis heute ist beispielsweise ungeklärt, welcher Effekt dafür sorgt, dass der elektrische Widerstand von Hochtemperatur-Supraleitern bei Temperaturen von rund -200 Grad Celsius auf Null sinkt.

    Solche außergewöhnlichen Zustände der Materie zu verstehen ist schwierig: Um die Physik der Hochtemperatur-Supraleiter zu verstehen wurden Quantensimulatoren entwickelt, die aus ultrakalten Lithiumatomen bestehen. Diese Simulatoren liefern Momentaufnahmen vom Quantensystem, das sich gleichzeitig in unterschiedlichen Konfigurationen befindet – Physiker sprechen von einer Superposition – und jeder Schnappschuss misst eine davon.

    Um die Merkmale solcher Quantensysteme verstehen zu können, wurden verschiedene theoretische Modelle entwickelt. Doch wie zutreffend sind diese? Die Frage lässt sich durch die Analyse der Bilddaten beantworten.

    Neuronale Netzwerke untersuchen die Quantenwelt

    Erfolgreich nutzt hierfür ein Forschungsteam der TU München und der Harvard University (USA) maschinelles Lernen: Ein künstliches neuronales Netzwerk wurde trainiert, zwei konkurrierende Theorien zu unterscheiden.

    „Ähnlich wie bei der Erkennung von Katzen oder Hunden auf Fotos werden Bilder von Konfigurationen aus jeder Quantentheorie in das neuronale Netzwerk eingespeist“, sagt Annabelle Bohrdt, Doktorandin an der TUM. „Die Netzwerkparameter werden dann optimiert, um jedem Bild das richtige Label zuzuweisen – in diesem Fall sind sie einfach nur Theorie A oder Theorie B statt Katze oder Hund.“

    Nach der Trainingsphase mit theoretischen Daten musste das neuronale Netzwerk das Gelernte anwenden und Momentaufnahmen von Quantensimulatoren den Theorien A oder B zuordnen. Das Netzwerk selektierte damit die Theorie mit der größeren Vorhersagekraft.

    Die neue Methode wollen die Forscher künftig nutzen, um die Übereinstimmung von Messungen mit unterschiedlichen theoretischen Modellen zu überprüfen. Ziel ist es, physikalische Effekte wie die Hochtemperatur-Supraleitung zu verstehen, was beispielsweise für verlustfreie Stromleitung und effizientere Magnetresonanz-Tomographen verwendet werden kann.

    Weitere Informationen

    Die Forschung wurde gefördert durch die National Science Foundation (NSF), das Office of Scientific Research (AFOSR) der US-Luftwaffe, das National Defense Science and Engineering Graduate (NDSEG) Programm des US-Department of Defense, das Gordon and Betty Moore Foundation EPIQS-Programm, die Studienstiftung des deutschen Volkes, die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Munich Center for Quantum Science and Technology (MCQST) und des Transregio TRR80 sowie durch das TUM Institute for Advanced Study, gefördert durch die deutsche Exzellenzinitiative und die Europäische Union, wo Prof. Knap die Rudolf Mößbauer Tenure Track Professur für Kollektive Quantendynamik inne hat.


    Contact for scientific information:

    Prof. Dr. Michael Knap
    Professur für Kollektive Quantendynamik
    Technische Universität München
    James-Franck-Str. 1, 85748 Garching
    Tel.: +49 89 289 53777
    E-Mail: michael.knap@ph.tum.de
    Web: http://users.ph.tum.de/ga32pex/


    Original publication:

    Classifying snapshots of the doped Hubbard model with machine learning
    Annabelle Bohrdt, Christie S. Chiu, Geoffrey Ji, Muqing Xu, Daniel Greif, Markus Greiner, Eugene Demler, Fabian Grusdt und Michael Knap
    nature physics, July 1, 2019 - DOI: 10.1038/s41567-019-0565-x
    https://www.nature.com/articles/s41567-019-0565-x


    More information:

    https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35570/ Link zur Pressemitteilung


    Images

    Künstliche Intelligenz hilft Physikern bei der Suche nach der optimalen Beschreibung von Quantenphänomenen.
    Künstliche Intelligenz hilft Physikern bei der Suche nach der optimalen Beschreibung von Quantenphän ...
    Bild: Annabelle Bohrdt und Christoph Hohmann / MCQST
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Künstliche Intelligenz hilft Physikern bei der Suche nach der optimalen Beschreibung von Quantenphänomenen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).