idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/24/2019 15:08

Surprising insight into Legionnaires’ disease

Dr. Anne Hardy Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

    In order to control cellular processes and thwart the immune system, the bacterium Legionella pneumophilia, the cause of the notorious Legionnaires’ disease, releases hundreds of enzymes. Biochemists at Goethe University have now elucidated important details in the interaction of bacterial effectors. They discovered how the regulatory enzyme SidJ keeps other dangerous virulence factors in check.

    The incidence of Legionnaires’ disease has increased in the past two decades. The natural habitat of Legionella is freshwater biotopes, where they mainly reproduce in amoebae. In addition, Legionella can also colonize water tanks or pipes and spread, for example, via poorly maintained air-conditioning systems. Contaminated aerosols are released into the air and trigger the infection. The pathogens cause, among others, pneumonia, which is often fatal in elderly patients or individuals with a weak immune system.

    What makes Legionella so dangerous is its ability to multiply in phagocytes of the immune system by secreting virulence factors. Some of these effectors – the enzymes of what is known as the SidE family – are so toxic that without tight control they would instantly kill their host cells. However, since Legionella needs the host cells in order to multiply, it has developed a sophisticated mechanism for the precise metering of SidE enzyme activity. Details of this process are now reported by scientists at Goethe University and from Grenoble in the journal Nature.

    They have shown that the regulator SidJ also released by Legionella works as an antidote to SidE enzymes, thus ensuring accurate control of SidE activity. The SidJ regulator is a glutamylase, i.e. it has a rare enzyme activity that allows amino acid glutamates to be linked together to form chains. In this case, SidJ attacks the central glutamate of SidE enzymes and inhibits their activity. So far, little is known about glutamylases – so the scientists were all the more surprised when they discovered that it is precisely this type of enzyme which is important for the coordinated interaction of the virulence factors of Legionella.

    “This is a typical example of how completely unpredictable results drive research. Such discoveries are what make science such a fascinating and exciting profession,” says Professor Ivan Dikic from the Institute of Biochemistry II and the Buchmann Institute for Molecular Life Sciences at Goethe University. “We can only gain a molecular understanding of the complex world of bacterial infections by working in interdisciplinary teams and combining methods from modern biochemistry and proteomics with cell and structural biology techniques.”

    The researchers also revealed how SidJ is activated in host cells: It requires the calcium-binding protein calmodulin found in mammalian cells. Cryo-electron microscopy played an important role in explaining the structure of the calmodulin-SidJ complex. “Glutamylation as a protein modification is understudied. Our finding that Legionella pneumophilia uses exactly this mechanism to sustain the infection certainly argues for more research in this field. For example, the extent to which Legionella utilizes this modification to regulate other cellular processes is completely unclear,” explains Dr. Sagar Bhogaraju, who led the microscopic examinations at the European Molecular Biology Laboratory (EMBL) in Grenoble.

    This so far unknown mechanism opens up new possibilities for research to inhibit the spread of Legionella in the host organism. “We’re currently working on eliminating SidJ selectively by developing inhibitors for the glutamylase domain. In addition to the use of antibiotics, they could prevent the spread of Legionella pneumophilia in phagocytes,” explains Dikic.


    Contact for scientific information:

    Professor Ivan Dikic, Institute of Biochemistry II, Niederrad Campus, and Buchmann Institute for Molecular Life Sciences, Riedberg Campus, Tel.: +49(0)69-6301-5964, Email: dikic@biochem2.uni-frankfurt.de


    Original publication:

    Sagar Bhogaraju, Florian Bonn, Rukmini Mukherjee, Michael Adams, Moritz M. Pfleiderer, Wojciech P. Galej, Vigor Matkovic, Sissy Kalayil, Donghyuk Shin , Ivan Dikic: Inhibition of SidE ubiquitin ligases through SidJ/Calmodulin catalyzed glutamylation, in Nature 22. Juli 2019 DOI: 10.1038/s41586-019-1440-8
    https://www.nature.com/articles/s41586-019-1440-8


    Images

    Cryo-Electron microscopy structure of SidJ (yellow)-calmodulin (cyan) complex with the experimental cryo-EM map shown in grey.
    Cryo-Electron microscopy structure of SidJ (yellow)-calmodulin (cyan) complex with the experimental ...
    Copyright: EMBL Grenoble
    None


    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results
    English


     

    Cryo-Electron microscopy structure of SidJ (yellow)-calmodulin (cyan) complex with the experimental cryo-EM map shown in grey.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).