Um einzelne Bauteile von beispielsweise Handys oder Computern immer weiter miniaturisieren zu können, gelten derzeit magnetische Wellen als vielversprechende Alternativen zur herkömmlichen Datenübertragung, die mittels elektrischer Ströme funktioniert. Als physikalische Grundlage dient dabei der sogenannte Spin der Elektronen im Trägermaterial, den man sich vereinfacht als eine Rotation des Elektrons um seine eigene Achse vorstellen kann. Physiker der Universität Münster haben einen Ansatz entwickelt, mit dem sich Spinwellen besser einsetzen lassen. Die Studie ist in „Nature Communications“ erschienen.
Kleiner, schneller, energiesparender – das ist das Ziel, dem die Entwickler von elektronischen Geräten seit Jahren entgegeneifern. Um einzelne Bauteile von Handys oder Computern immer weiter miniaturisieren zu können, gelten derzeit magnetische Wellen als vielversprechende Alternativen zur herkömmlichen Datenübertragung, die mittels elektrischer Ströme funktioniert. Der Grund: Bei immer kleiner werdenden Chips stößt die elektrische Datenübertragung irgendwann an ihre Grenzen, weil Elektronen, die sehr eng aneinander liegen, viel Wärme abgeben – was zu einer Störung der physikalischen Abläufe führen kann.
Hochfrequente magnetische Wellen können sich dagegen auch in kleinsten Nanostrukturen ausbreiten und so Informationen übertragen und verarbeiten. Als physikalische Grundlage dient dabei der sogenannte Spin der Elektronen im Trägermaterial, den man sich vereinfacht als eine Rotation des Elektrons um seine eigene Achse vorstellen kann. Allerdings sind Spinwellen in der Mikroelektronik bisher nur eingeschränkt nutzbar, bedingt durch die sogenannte Dämpfung, die auf die Spinwellen einwirkt und sie schwächt.
Physiker der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt einen neuen Ansatz entwickelt, mit dem sich unerwünschte Dämpfungen beseitigen und Spinwellen dadurch besser einsetzen lassen. „Unsere Ergebnisse zeigen einen neuen Weg für die Anwendung von effizienten Spin-getriebenen Bauteilen auf“, betont Studienleiter Dr. Vladislav Demidov vom Institut für Angewandte Physik (Forschergruppe Demokritov). Der neue Ansatz kann für zukünftige Entwicklungen in der Mikroelektronik, aber auch für die weitere Erforschung von Quantentechnologien und neuartigen Computerverfahren relevant sein. Die Studie ist in der Fachzeitschrift „Nature Communications“ erschienen.
Hintergrund und Methode:
Magnonik nennt sich das Forschungsfeld, in dem Wissenschaftler Elektronenspins und deren Wellen in magnetischen Materialien untersuchen. Der Begriff leitet sich von den Teilchen des Magnetismus ab, die im Fachjargon als Magnonen bezeichnet werden. Sie entsprechen den Spinwellen.
Die beste Möglichkeit, die störende Dämpfung von Spinwellen elektronisch zu kompensieren, ist der sogenannte Spin-Hall-Effekt, der vor einigen Jahren entdeckt wurde. Dabei werden die Elektronen in einem Spinstrom je nach Ausrichtung ihres Spins seitlich abgelenkt, was es ermöglicht, Spinwellen in magnetischen Nanogeräten effizient zu erzeugen und zu steuern. Allerdings führen sogenannte nichtlineare Effekte in den Schwingungen dazu, dass der Spin-Hall-Effekt in der praktischen Anwendung nicht richtig greift – ein Grund, weshalb Wissenschaftler bisher noch keine dämpfungsfreien Spinwellen verwirklichen konnten.
In ihrem Experiment platzierten die Wissenschaftler wenige Nanometer dünne Magnetplatten aus Mu-Metall oder aus Cobalt und Nickel auf einer ebenfalls sehr dünnen Schicht aus Platin. An den Grenzflächen der verschiedenen Materialien wirkten sogenannte magnetische Anisotropien – was bedeutet, dass die Magnetisierung in eine vorgegebene Richtung verlief. Durch das Ausbalancieren der Anisotropien der verschiedenen Schichten konnten die Forscher die ungünstige nichtlineare Dämpfung effizient unterdrücken und dadurch kohärente Spinwellen erreichen – also Wellen, deren Geschwindigkeit und Frequenz gleich ist und die dadurch eine feste Phasenverschiebung haben. Dadurch erreichten die Wissenschaftler eine vollständige Dämpfungskompensation im Magnetsystem, wodurch sich die Wellen räumlich ausbreiten konnten.
Die Wissenschaftler erwarten, dass ihr neuer Ansatz einen signifikanten Einfluss auf zukünftige Entwicklungen in der Magnonik und Spintronik hat. „Unsere Ergebnisse eröffnen einen Weg für den Einsatz von Spin-Hall-Oszillatoren, also schwingungsfähigen mechanischen Systemen, die leistungsfähige Mikrowellensignale erzeugen können“, betont Boris Divinskiy, Doktorand am Institut für Nichtlineare magnetische Dynamik der WWU und Erstautor der Studie.
Förderung:
Die Studie erhielt finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft und National Science Foundation der USA.
Dr. Vladislav Demidov (Westfälische Wilhelms-Universität Münster)
Tel: +49 251 83-36224
demidov@uni-muenster.de
B. Divinskiy et al. (2019): Controlled nonlinear magnetic damping in spin-Hall nano-devices. Nature Communications; DOI: 10.1038/s41467-019-13246-7
https://www.nature.com/articles/s41467-019-13246-7 Originalpublikation in „Nature Communications“
https://www.uni-muenster.de/Physik.AP/Demokritov/index.html WWU-Forschergruppe WWU-Forschergruppe Prof. Sergej Demokritov
https://www.uni-muenster.de/forschung/profil/schwerpunkt/nanowissenschaften.html WWU-Forschungsschwerpunkt "Nanowissenschaften"
Criteria of this press release:
Journalists
Information technology, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).