idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/06/2020 17:56

Belle II yields the first results: In search of the Z′ boson

Barbara Wankerl Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik

    The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

    Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data. The Max Planck Institute for Physics, the Semiconductor Laboratory of the Max Planck Society, the Ludwigs-Maximilians-Universität and the Technical University of Munich made leading contributions to the new development of the highly sensitive innermost detector, the Pixel Vertex Detector and the software for analyzing the data.

    With the help of Belle II, scientists are looking for traces of new physics that can be used to explain the unequal occurrence of matter and anti-matter and the mysterious dark matter. One of the so far undiscovered particles that the Belle II detector is looking for is the Z′ boson – a variant of the Z boson, which acts as an exchange particle for the weak interaction.

    As far as we know, about 25 percent of the universe consists of dark matter, whereas visible matter accounts for just under 5 percent of the energy budget. Both forms of matter attract each other through gravity. Dark matter thus forms a kind of template for the distribution of visible matter. This can be seen, for example, in the arrangement of galaxies in the universe.

    Link between dark and normal matter

    The Z′ boson may play an interesting role in the interaction between dark and visible matter, (i.e., it could be a kind of mediator between the two forms of matter). The Z′ boson can – at least theoretically – result from the collision of electrons (matter) and positrons (anti-matter) in the SuperKEKB and then decay into invisible dark matter particles.

    The Z′ boson can thus help scientists to understand the behavior of dark matter. What’s more, the discovery of the Z′ boson could also explain other observations that are not consistent with the standard model, the fundamental theory of particle physics.

    Important clue: Detection of muon pairs

    But how can the Z′ boson be detected in the Belle II detector? Not directly – that much is sure. Theoretical models and simulations predict that the Z′ boson could reveal itself through interactions with muons, the heavier relatives of electrons. If scientists discover an unusually high number of muon pairs of opposite charge after the electron/positron collisions as well as unexpected deviations in energy and momentum conservation, this would be an important indication of the Z′ boson.

    However, the new Belle II data has not yet provided any indication of the Z′ boson. But with the new data, the scientists can limit the mass and coupling strengths of the Z′ boson with previously unattainable accuracy.

    More data, more precise analyses

    “Despite the still small amount of data, we can now make measurements that have never been done before,” says the spokesperson of the German groups, Dr. Thomas Kuhr from the Ludwig Maximilian University of Munich. “This underlines the important role of the Belle II experiment in the study of elementary particles.”

    These initial results come from the analysis of a small amount of data collected during the start-up phase of SuperKEKB in 2018. Belle II went into full operation on March 25, 2019. Since then, the experiment has been collecting data while continuously improving the collision rate of electrons and positrons.

    If the experiment is perfectly tuned, it will provide considerably more data than in the recently published analyses. The physicists thus hope to gain new insights into the nature of dark matter and other unanswered questions.

    The German working groups in the Belle II experiment are funded by the following institutions and programs:

    European Research Council
    Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy
    - “ORIGINS“: EXC-2094 – 390783311
    - “Quantum Universe”: EXC-2121 – 390833306
    German Federal Ministry of Education and Research (BMBF): BMBF funding of collaborative research “Exploring of the Universe and Matter” (ErUM)
    Helmholtz Society
    European Union’s Horizon 2020 – grant agreement No 822070
    Max Planck Society


    Contact for scientific information:

    Prof. Dr. Thomas Kuhr
    Ludwig-Maximilians-Universität München
    thomas.kuhr@lmu.de
    +49 89 35831-7174

    Dr. Hans-Günther Moser
    Max-Planck-Institut für Physik
    moser@mpp.mpg.de
    +49 89 32354-248


    Original publication:

    Search for an invisibly decaying Z’ boson at Belle II in e+e– ® m+ m– (e+ – m– +) + missing energy final states
    The Belle II Collaboration
    Phys. Rev. Lett. 124, 141801 – Published 6 April 2020
    DOI:10.1103/PhysRevLett.124.141801


    More information:

    https://www.mpp.mpg.de/en/what-s-new/news/detail/belle-ii-liefert-erste-ergebnis...


    Images

    Collision events in the core of the Belle II detector
    Collision events in the core of the Belle II detector
    KEK/Belle II
    None

    The Belle II detector searches for the Z’ boson. This particle could reveal itself by an unexpected high number of muon pairs with opposite charges, as shown here.
    The Belle II detector searches for the Z’ boson. This particle could reveal itself by an unexpected ...
    KEK/Belle II
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research projects
    English


     

    Collision events in the core of the Belle II detector


    For download

    x

    The Belle II detector searches for the Z’ boson. This particle could reveal itself by an unexpected high number of muon pairs with opposite charges, as shown here.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).