idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/24/2020 14:36

Bose-Einstein-Kondensat: Magnetische Teilchen verhalten sich abstoßend

Svenja Ronge Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    Eine Datenübertragung, die mit magnetischen Wellen anstelle elektrischer Ströme funktioniert, kann die Basis für zukünftige Informationstechnologien sein. Vor einigen Jahren erreichten Forscher der Universität Münster einen neuen Quantenzustand von magnetischen Teilchen bei Raumtemperatur – ein Bose-Einstein-Kondensat. In einer neuen Studie zeigen sie, dass sich die Teilchen im Kondensat abstoßend verhalten, was zu seiner Stabilisierung führt. Damit lösen sie einen langjährigen Widerspruch zwischen der Theorie und Praxis auf. Die Studie ist in der Fachzeitschrift „Nature Communications“ erschienen.

    Eine Datenübertragung, die mittels magnetischer Wellen anstelle elektrischer Ströme funktioniert – für viele Wissenschaftlerinnen und Wissenschaftler ist das die Basis zukünftiger Technologien, mit der die Übertragung schneller und elektrische Bauteile kleiner und energiesparender gemacht werden können. Magnonen, die Teilchen des Magnetismus, dienen dabei als bewegliche Informationsträger. Vor knapp 15 Jahren gelang es Forschern der Westfälischen Wilhelms-Universität Münster (WWU) erstmals, einen neuartigen Quantenzustand von Magnonen bei Raumtemperatur zu erreichen – ein auch als „Superatom“ bezeichnetes Bose-Einstein-Kondensat aus magnetischen Teilchen, also ein extremer Aggregatzustand, der üblicherweise nur bei sehr geringen Temperaturen stattfindet.

    Seither fällt auf, dass dieses Bose-Einstein-Kondensat räumlich stabil bleibt – obwohl die Theorie voraussagt, dass ein Kondensat aus Magnonen eigentlich zusammenfallen müsste, schließlich handelt es sich um anziehende Teilchen. In einer aktuellen Studie zeigen die Forscher jetzt erstmals, dass sich die Magnonen innerhalb des Kondensats abstoßend verhalten, was zur Stabilisierung des Kondensats führt. „Damit lösen wir einen langjährigen Widerspruch zwischen der Theorie und Praxis auf“, betont Studienleiter Prof. Dr. Sergej O. Demokritov. Die Ergebnisse können für die Entwicklung zukünftiger Informationstechnologien relevant sein. Die Studie ist in der Fachzeitschrift „Nature Communications“ erschienen.

    Hintergrund und Methode:

    Das Besondere am Bose-Einstein-Kondensat ist, dass sich die Teilchen in diesem System nicht unterscheiden und sie sich überwiegend im selben quantenmechanischen Zustand befinden. Der Zustand kann daher durch eine einzige Wellenfunktion beschrieben werden, woraus Eigenschaften wie die Suprafluidität resultieren. Die Suprafluidität zeichnet sich durch eine sogenannte Null-Dissipation während der Bewegung des Kondensats bei tiefen Temperaturen aus – unter Dissipation versteht man das Verschwinden von Energie und Impuls infolge von Reibung.

    Zuvor waren die Vorgänge im Bose-Einstein-Kondensat ausschließlich in homogenen Magnetfeldern untersucht worden – also in Magnetfeldern, die an jeder Stelle gleich stark sind und in denen die Feldlinien gleichmäßig in eine Richtung zeigen. Die Forscher verwendeten einen Mikrowellen-Resonator, der Felder mit Frequenzen im Mikrowellenbereich erzeugte, wodurch die Magnonen angeregt wurden und ein Bose-Einstein-Kondensat bildeten. Im aktuellen Experiment führten die Wissenschaftler einen zusätzlichen sogenannten Potenzialtopf ein. Dieser entspricht einem inhomogenen statischen Magnetfeld, das Kräfte erzeugt, die auf das Kondensat wirken. So konnten die Forscher die Wechselwirkung der Magnonen im Kondensat direkt beobachten.

    Dazu nutzten sie ein Verfahren der Brillouin-Lichtstreu-Spektroskopie. Dabei wurde die lokale Dichte der Magnonen mit dem Laserlicht einer Sonde aufgezeichnet, das auf die Oberfläche der Probe fokussiert war. Auf diese Weise erhoben sie die räumliche Umverteilung der Kondensatdichte und beobachteten das Verhalten der magnetischen Teilchen unter verschiedenen experimentellen Bedingungen. Die erhobenen Daten ließen die eindeutige Schlussfolgerung zu, dass die Magnonen im Kondensat abstoßend zueinander interagieren und dadurch das Kondensat stabil bleibt.

    Darüber hinaus beobachteten die Forscher zwei charakteristische Zeiten der Dissipation: zum einen die Energie- und zum anderen die Impulsdissipation im Kondensat. Die Zeit der Impulsdissipation – der Impuls beschreibt den mechanischen Bewegungszustand eines physikalischen Objekts – erwies sich als sehr lang. „Das kann der erste experimentelle Nachweis für eine mögliche magnetische Suprafluidität bei Raumtemperatur sein“, betont Sergej Demokritov.

    Bisher wurde die Verwendung von Kondensaten aus magnetischen Teilchen vor allem durch die kurze Lebensdauer des Kondensats erschwert. „Unsere Erkenntnisse über bewegtes Kondensat und die Untersuchung des Magnon-Transports sowie die Entdeckung zweier unterschiedlicher Zeiten zeigen, dass die Lebensdauer nichts mit der Impulsdissipation des bewegten Kondensats zu tun hat“, sagt Erstautor Dr. Igor Borisenko. Die Ergebnisse könnten daher neue Perspektiven für Magnon-Anwendungen in zukünftigen Informationstechnologien eröffnen.

    Beteiligte Institutionen und Förderung:

    Neben den Forschern des Instituts für Angewandte Physik und des Center for Nanotechnology der WWU waren an der Studie Wissenschaftler der Universität zu Köln, der Texas A&M University und der Russischen Akademie der Wissenschaften beteiligt. Die Studie erhielt finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft und das Forschungszentrum QM2 der Universität zu Köln.


    Contact for scientific information:

    Prof. Dr. Sergej Demokritov (Universität Münster)
    Phone: +49 251 83-33551
    demokrit@uni-muenster.de


    Original publication:

    I. V. Borisenko et al. (2020): Direct evidence of spatial stability of Bose-Einstein condensate of magnons. Nature Communications; DOI: 10.1038/s41467-020-15468-6


    More information:

    https://www.nature.com/articles/s41467-020-15468-6 Originalpublikation in "Nature Communications"
    https://www.uni-muenster.de/Physik.AP/Demokritov/en/index.html Forschergruppe Prof. Sergej Demokritov an der WWU
    https://www.uni-muenster.de/forschung/profil/schwerpunkt/nanowissenschaften.html Forschungsschwerpunkt "Nanowissenschaften" der WWU


    Images

    Ein Mikrowellen-Resonator (braun) erzeugte Felder mit Frequenzen im Mikrowellenbereich. Angeregte Magnonen bildeten ein Bose-Einstein-Kondensat. Laserlicht (grün) zeichnete die Teilchendichte auf.
    Ein Mikrowellen-Resonator (braun) erzeugte Felder mit Frequenzen im Mikrowellenbereich. Angeregte Ma ...
    I. V. Borisenko et al./ Nature Communications
    None


    Criteria of this press release:
    Journalists
    Information technology, Physics / astronomy
    transregional, national
    Research results
    German


     

    Ein Mikrowellen-Resonator (braun) erzeugte Felder mit Frequenzen im Mikrowellenbereich. Angeregte Magnonen bildeten ein Bose-Einstein-Kondensat. Laserlicht (grün) zeichnete die Teilchendichte auf.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).