Computermodell verschmelzender Neutronensterne sagt voraus, wie dies erkannt werden kann
FRANKFURT. Der modernen Teilchenphysik zufolge ist Materie im Inneren verschmelzender Neutronensterne so dicht, dass sie aufgelöst in ihre Elementarteilchen vorliegen könnte. Dieser Materiezustand, das sogenannte Quark-Gluon-Plasma, könnte ein bestimmtes Muster in Gravitationswellen hervorrufen. Dies haben Physiker der Goethe-Universität und des Frankfurt Institute for Advanced Studies jetzt mithilfe von Supercomputern berechnet. (Physical Review Letters, DOI 10.1103/PhysRevLett.124.171103)
Neutronensterne gehören zu den dichtesten Objekten im Universum: Wäre unsere Sonne mit ihrem Radius von 700.000 Kilometern ein Neutronenstern, so wäre ihre Masse in einer nahezu perfekten Kugel mit einem Radius von rund 12 Kilometern zusammengepresst. Wenn zwei Neutronensterne miteinander kollidieren und zu einem hypermassiven Neutronenstern verschmelzen, so wird die Materie im Kern dieses neuen Objekts unvorstellbar heiß und dicht. Physikalischen Berechnungen zufolge hätte dies zur Folge, dass sich Hadronen wie zum Beispiel Neutronen und Protonen – aus diesen Teilchen setzt sich die Materie in unserer Umgebung zusammen – in ihre Bestandteile Quarks und Gluonen auflösen und ein Quark-Gluon-Plasma bilden.
2017 wurde erstmals entdeckt, dass verschmelzende Neutronensterne ein Signal in Form einer Gravitationswelle verursachen, die auf der Erde detektiert werden kann. Aus der Gravitationswelle lässt sich nicht nur etwas über Gravitation lernen, sondern auch über das Verhalten von Materie unter extremen Bedingungen. Bei der ersten Entdeckung solcher Gravitationswellen 2017 wurden diese allerdings nicht über den Verschmelzungszeitpunkt hinaus aufgezeichnet.
Dort setzt die Arbeit der Frankfurter Physiker an. Sie simulierten in einem Computermodell verschmelzende Neutronensterne und das Produkt dieser Verschmelzung, um die Bedingungen zu untersuchen, unter denen ein Übergang von Hadronen zu einem Quark-Gluon-Plasma stattfinden könnte und wie sich dies auf die entstehende Gravitationswelle auswirken würde. Das Ergebnis: In einer bestimmten, späten Phase der Existenz des verschmolzenen Objekts fand ein Phasenübergang zu einem Quark-Gluon-Plasma statt und hinterließ ein klares und charakteristisches Muster im Gravitationswellensignal.
Professor Luciano Rezzolla von der Goethe-Universität ist überzeugt: „Wir haben ein im Vergleich zu bisherigen Simulationen neues und wesentlich klarer zu detektierendes Muster in den Gravitationswellen entdeckt. Wenn sich dieses Muster in den Gravitationswellen findet, die wir von künftigen Neutronenstern-Verschmelzungen empfangen, haben wir einen deutlichen Beweis für die Entstehung eines Quark-Gluon-Plasmas im heutigen Universum.“
Publikation: Post-merger gravitational-wave signatures of phase transitions in binary mergers
Lukas R. Weih, Matthias Hanauske, Luciano Rezzolla, Physical Review Letters DOI 10.1103/PhysRevLett.124.171103 https://journals.aps.org/prl/
Video: Visualisierung einer Neutronensternverschmelzung https://www.youtube.com/watch?v=rj-r-YA9d6E&t=1s
Diese Simulation zeigt die Dichte gewöhnlicher Materie, hauptsächlich Neutronen, in den Farben Rot und Gelb. Kurz nachdem die beiden Sterne verschmelzen, verfärbt sich das extrem dichte Zentrum nach Grün, was die Bildung des Quark-Gluon-Plasmas anzeigt.
Bilder zum Download: http://www.uni-frankfurt.de/87973606
Bildtext Montage: Montage aus Computersimulation der verschmelzenden Neutronensterne (links) und dem Bild einer Schwerionenkollision, die die Verbindung von Astrophysik und Kernphysik verdeutlicht. Bild: Lukas R. Weih & Luciano Rezzolla (Goethe-Universität Frankfurt) (right half of the image from cms.cern)
Bildtext Simulation: Kurz nach der Verschmelzung zweier Neutronensterne bildet sich im Zentrum des neuen Objekts ein Quark-Gluon-Plasma (grün). Rot, gelb: gewöhnliche Materie, hauptsächlich Neutronen. Bild: Lukas R. Weih & Luciano Rezzolla (Goethe-Universität Frankfurt)
Kontakt:
Goethe-Universität Frankfurt
Prof. Dr. Luciano Rezzolla
Chair of Theoretical Astrophysics
Institute for Theoretical Physics
+49-69-79847871/47879
rezzolla@itp.uni-frankfurt.de
https://astro.uni-frankfurt.de/rezzolla/
Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drei größten deutschen Universitäten. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist die Goethe-Universität Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. www.goethe-universitaet.de
Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Markus Bernards, Referent für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-12498, Fax 069 798-763-12531, bernards@em.uni-frankfurt.de
Prof. Dr. Luciano Rezzolla
Chair of Theoretical Astrophysics
Institute for Theoretical Physics
+49-69-79847871/47879
rezzolla@itp.uni-frankfurt.de
https://astro.uni-frankfurt.de/rezzolla/
Post-merger gravitational-wave signatures of phase transitions in binary mergers
Lukas R. Weih, Matthias Hanauske, Luciano Rezzolla, Physical Review Letters DOI 10.1103/PhysRevLett.124.171103 https://journals.aps.org/prl/
Montage aus Computersimulation der verschmelzenden Neutronensterne (links) und dem Bild einer Schwer ...
Lukas R. Weih & Luciano Rezzolla (Goethe-Universität Frankfurt) (right half of the image from cms.cern)
None
Criteria of this press release:
Journalists, Scientists and scholars, Students
Physics / astronomy
transregional, national
Research results, Transfer of Science or Research
German
Montage aus Computersimulation der verschmelzenden Neutronensterne (links) und dem Bild einer Schwer ...
Lukas R. Weih & Luciano Rezzolla (Goethe-Universität Frankfurt) (right half of the image from cms.cern)
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).