Instrumente zukünftiger Weltraummissionen sind einer Studie zufolge in der Lage Aminosäuren, Fettsäuren und Peptide zu detektieren. Sie können sogar biologische Prozesse auf Ozeanmonden in unserem Sonennsystem aufspüren, wie ein internationales Team, geführt von Wissenschaftlern der Forschungsgruppe Planetologie der Freien Universität Berlin, herausfand. Die beiden Studien wurden finanziell vom Europäischen Forschungsrat unter dem Consolidator Grant 724908-Habitat OASIS gefördert und in der wissenschaftlichen Fachzeitschrift Astrobiology veröffentlicht.
Enceladus ist einer der Monde des Saturn und berühmt für seine Gas- und Eisfontänen, die er in das Weltall ausstößt. Das Material dieser Fontänen stammt von dem unter einem Eispanzer liegenden unterirdischen Ozean des Mondes. Ein ähnliches Phänomen findet vermutlich auf dem Jupitermond Europa statt. Die Zusammensetzung der von diesen Wasserwelten ausgestoßenen Eisteilchen können von Raumsonden beim Durchflug durch die Eisfontänen untersucht werden. Dies gelingt indem die Partikel mit sogenannten Einschlagsionisations-Massenspektrometern analysiert werden (Abbildung: Pressefoto). Wissenschaftler der Freien Universität Berlin haben nun einzigartige Laborexperimente durchgeführt, bei denen sie die im Weltall aufgenommenen Massenspektren solcher Eisteilchen detailgetreu simuliert haben. „In unserer ersten Studie haben wir Experimente mit Aminosäuren, Fettsäuren und Peptiden durchgeführt, um das spektrale Erscheinungsbild dieser organischen Moleküle, die in den Eisteilchen eingeschlossen sein könnten, vorherzusagen,“ erklärt Fabian Klenner, Erstautor beider Studien. „Unsere Daten zeigen, dass diese potenziellen Biomoleküle sogar in sehr geringen Konzentrationen eindeutig identifizierbar sind.“
Diese Ergebnisse führten die Forscher zur nächsten Frage: Könnten Massenspektrometer auf Raumsonden gegenwärtig ablaufende biologische Prozesse auf Ozeanwelten aufspüren? „Einfach nur die Biomoleküle zu identifizieren, reicht nicht aus“, sagt der Leiter der Forschungsgruppe Planetologie Prof. Frank Postberg, der zusammen mit Fabian Klenner Erstautor der zweiten Studie ist. „Aminosäuren können beispielsweise auch durch chemische Prozesse ohne Mitwirkung von Leben entstehen. Wir müssen also ein bestimmtes spektrales Muster aus verschiedenen Aminosäuren identifizieren, um sicher zu sein, dass biologische Prozesse am Werk sind.“ Das Team untersuchte das Verhalten von Mixturen potenzieller Biomoleküle in einem Szenario, das für Ozeanwelten realistisch ist. Hierbei fügten die Forscher auch eine Vielzahl von anderen organischen und inorganischen Substanzen zu ihren Proben hinzu und waren in der Lage, zwischen abiotischen und biotischen „Fingerabdrücken“ in den Massenspektren zu unterscheiden. „Chemische Prozesse, die auf Leben in einer außerirdischen Wasserwelt hinweisen, durch das Beproben von ein paar winzigen Eisteilchen aufzuspüren, wäre ein entscheidender Schritt für das Finden von Leben außerhalb der Erde. Und wir haben gezeigt, dass dies mit einem Massenspektrometer auf einer vorbeifliegenden Raumsonde möglich ist“, erläutert Fabian Klenner.
Die Ergebnisse dieser Studien kommen rechtzeitig für die Europa Clipper Mission der NASA zu Jupiters Mond Europa, deren Start für 2024 geplant ist. Die Raumsonde wird ein für das Aufspüren von Biomolekülen geeignetes Massenspektrometer mitführen, an dem die Forschungsgruppe Planetologie der Freien Universität Berlin maßgeblich beteiligt ist.
Die zwei internationalen Studien wurden in Zusammenarbeit mit der Ruprecht-Karls-Universität Heidelberg, NASA’s Jet Propulsion Laboratory in Kalifornien, dem Leibniz-Institut für Oberflächenmodifizierung in Leipzig, der Universität Leipzig, der University of Colorado in Boulder, dem Southwest Research Institute in Texas und der Cornell University in New York durchgeführt.
Fabian Klenner, Institut für Geologische Wissenschaften, Freie Universität Berlin, Telefon: +4930838-66281, E-Mail: f.klenner@fu-berlin.de
Prof. Dr. Frank Postberg, Institut für Geologische Wissenschaften, Freie Universität Berlin, Telefon: +4930838-70508, E-Mail: frank.postberg@fu-berlin.de
Fabian Klenner, Frank Postberg, Jon Hillier, Nozair Khawaja, René Reviol, Ferdinand Stolz, Morgan L. Cable, Bernd Abel, and Lenz Nölle (2020a) Analog Experiments for the Identification of Trace Biosignatures in Ice Grains from Extraterrestrial Ocean Worlds. Astrobiology 20(2):179–189. DOI: 10.1089/ast.2019.2065
Fabian Klenner, Frank Postberg, Jon Hillier, Nozair Khawaja, Morgan L. Cable, Bernd Abel, Sascha Kempf, Christopher R. Glein, Jonathan I. Lunine, Robert Hodyss, René Reviol, and Ferdinand Stolz (2020b) Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. Astrobiology 20:online ahead of print. DOI: 10.1089/ast.2019.2188
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Chemistry, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).