idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/29/2020 17:00

Optogenetik: Mit Licht Pflanzenprozesse steuern

Carolin Grape Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Synthetische Biologie: Veröffentlichung in NATURE METHODS

    25.06.2020 – Einem Forschungsteam in der Biologie und CEPLAS an der Heinrich-Heine-Universität Düsseldorf (HHU) ist es zusammen mit Kollegen der Universität Freiburg gelungen, ein optogenetisches Werkzeug für den Einsatz in der Pflanzenforschung zu entwickeln. Mit ihm können per Licht Prozesse in Pflanzen präzise gesteuert werden, wie sie nun in NATURE METHODS berichten.

    Die Optogenetik bietet ein sehr mächtiges Forschungsinstrumentarium für die Biologie.
    Mit ihm kann das Verhalten von biologischen Zellen mit optischen Schaltern gesteuert werden, indem gezielt bestimmte Abschnitte des Genoms aktiviert werden. So lassen sich etwa Signal- und Stoffwechselprozesse durch gezielte Aktivierung mit Licht kontrollieren.

    Viele Publikationen zur Optogenetik haben Zellen bei Säugetieren, Hefen und Bakterien zum Ziel. Weit weniger häufig sind dagegen Arbeiten aus dem Pflanzenbereich. Dies liegt auch daran, dass geeignete optische Schalter fehlen, die in Pflanzenzellen eingesetzt und dort gezielt geschaltet werden können, da die Pflanzen selbst Licht für ihr Wachstum benötigen und deshalb die Schalter stetig aktiv wären.

    Ein Team um die HHU-CEPLAS-Forscher Prof. Dr. Matias Zurbriggen (Institut für Synthetische Biologie) und Prof. Dr. Rüdiger Simon (Institut für Entwicklungsgenetik) ist es nun mit Kolleginnen und Kollegen vom CIBSS an der Universität Freiburg und der University of East Anglia-Norwich gelungen, einen für Pflanzen maßgeschneiderten optogenetischen Schalter zu entwickeln. Dieses PULSE (Plant Usable Light-Switch Elements) genannte Werkzeug eignet sich für Pflanzen im normalen Tag-/Nachtzyklus. Es wird durch gezielte Bestrahlung mit Licht mit rotem Licht einer sehr eng begrenzten Wellenlänge aktiviert und mit normalem weißem Licht zurücksetzt.

    PULSE besitzt dazu zwei optogenetische Schalter, die auf zwei unterschiedliche Wellenlängen reagieren: Das monochromatische rote Licht aktiviert den Schalter und ermöglicht somit, dass nur dann ein bestimmtes Gen ausgelesen wird. Blaues Licht aus dem Tageslicht setzt den Schalter wieder zurück und stoppt somit die Genexpression. Dieser Prozess ist beliebig oft wiederholbar.

    Prof. Zurbriggen zur Bedeutung der Entwicklung: „PULSE führt die überlegenen Vorteile der Optogenetik in Pflanzen ein. Das System ist vollständig reversibel, es erreicht eine hohe Dynamik und zeitliche Auflösung. Die Steuerung zellulärer Prozesse mit hoher räumlich-zeitlicher Auflösung hilft, die Dynamik biologischer Signalnetzwerke quantitativ zu verstehen und biotechnologische Anwendungen zu entwickeln“.

    Die Düsseldorfer Forscherinnen und Forscher haben PULSE zunächst in eine der Modellpflanzen der Biologie, in die Ackerschmalwand (Arabidopsis thaliana) eingebaut. Ebenso war es möglich, dieses Werkzeug mit CRISPR/Cas9-basierten Technologien zu kombinieren. Und schließlich konnten, am Beispiel von Tabakpflanzen (Nicotiana benthamiana) und wiederum der Ackerschmalwand, auch physiologische Reaktionen bei Pflanzen manipuliert werden, zum Beispiel deren Immunantwort.

    Prof. Simon: „Das optogenetische Werkzeug erlaubt, die Ausprägung wünschenswerter Eigenschaften bei einer Pflanze quasi zu programmieren. Damit kann PULSE das optogenetische Instrumentarium für die Pflanzenforschung erheblich erweitern und es in Zukunft erleichtern, gezielt biologische Prozesse wie z.B. Differenzierungs- und Entwicklungsprozesse, Hormonsignalwege und Stressantworten zu untersuchen und zu manipulieren“.

    Die Arbeiten wurden im Rahmen des Forschungsprogramms Cluster of Excellence on Plant Sciences (CEPLAS) durchgeführt. Das HHU-Team arbeitete dabei mit Forschern des Exzellenzclusters CIBSS – Centre for Integrative Biological Signalling Studies an der Universität Freiburg um Prof. Dr. Thomas Ott, Prof. Dr. Wilfried Weber und Prof. Dr. Jens Timmer und Ben Miller an der University of East-Anglia-Norwich zusammen.


    Original publication:

    Rocio Ochoa-Fernandez, Nikolaj B. Abel, Franz-Georg Wieland, Jenia Schlegel, Leonie A. Koch, J. Benjamin Miller, Raphael Engesser, Giovanni Giuriani, Simon M. Brandl, Jens Timmer, Wilfried Weber, Thomas Ott, Rüdiger Simon, Matias D. Zurbriggen, Optogenetic control of gene expression in plants in the presence of ambient white light, Nature Methods (published online 29.06.2020)

    DOI: 10.1038/s41592-020-0868-y

    Publikation online: www.nature.com/articles/s41592-020-0868-y


    Images

    PULSE ist ein optogenetisches Werkzeug für die Genexpression in Pflanzen und eignet sich für Pflanzen im normalen Tag-/Nachtzyklus.
    PULSE ist ein optogenetisches Werkzeug für die Genexpression in Pflanzen und eignet sich für Pflanze ...
    Grafik: Rocio Ochoa-Fernandez
    Institut für Synthetische Biologie, Universität Düsseldorf

    Die Optogenetik in Pflanzen. PULSE erlaubt die präzise und reversible Steuerung der Genexpression in Pflanzen bei normalem Licht. (Foto:  Leonie-Alexa Koch, Institut für Synthetische Biologie, Universität Düsseldorf).
    Die Optogenetik in Pflanzen. PULSE erlaubt die präzise und reversible Steuerung der Genexpression in ...
    Leonie-Alexa Koch
    Institut für Synthetische Biologie, Universität Düsseldorf


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Chemistry
    transregional, national
    Scientific Publications
    German


     

    PULSE ist ein optogenetisches Werkzeug für die Genexpression in Pflanzen und eignet sich für Pflanzen im normalen Tag-/Nachtzyklus.


    For download

    x

    Die Optogenetik in Pflanzen. PULSE erlaubt die präzise und reversible Steuerung der Genexpression in Pflanzen bei normalem Licht. (Foto: Leonie-Alexa Koch, Institut für Synthetische Biologie, Universität Düsseldorf).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).