idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/18/2020 10:04

How do memories leave traces in the DNA? Epigenetic signatures influenced by synaptic signals

Isabell Redelstorff Wissenschaftsorganisation & Öffentlichkeitsarbeit
Leibniz-Institut für Neurobiologie

    It is generally believed that rapid and reversible DNA methylation in the brain is essential for the stability of long-term memory, but very little is known about how synaptic signals can control DNA methylation to induce permanent changes in plasticity-related gene expression. A new study by Michael R. Kreutz's group at the Leibniz Institute of Neurobiology Magdeburg (LIN) reveals a mechanism by which the activity of synapses controls the protein levels of a de novo DNA methylating enzyme. The study was published in the journal "Neuropsychopharmacology".

    The genetic code in our DNA is not "set in stone" but can be changed by biochemical processes. This phenomenon is called epigenetics. DNA methylation is the most important and best-studied epigenetic modification of DNA. Research has shown that DNA methylation affects the fine-tuning of gene expression in response to neuronal activity in the brain. DNMT3A1 is the primary enzyme in the adult brain for de novo methylation of DNA. How is this enzyme regulated by synaptic activity in order to set precisely fitting epigenetic signatures in the DNA?

    Neural mechanism creates control

    The authors of the study discovered a mechanism that allows synaptic control of DNMT3A1 levels in neurons, thereby creating a time window for reduced DNA do novo methylation at a group of target genes. In order to degrade the enzyme in a targeted manner, it interacts with a protein that is biochemically tagged with a modification called neddylation. This happens, for example, when mice learn to remember the exact placement of objects in an arena. If this neddylation process is blocked, synapses are less plastic and the mice have a much worse memory. "We wanted to know how synapses control DNA methylation in the cell nucleus and why the controlled degradation of the DNA methylation enzyme is so important for memory. We found that one of the target genes is the neuroplasticity factor BDNF, which plays a central role in spatial learning and memory processes," explains first author Gonca Bayraktar. "These findings are exciting because it is known that disorders in DNA methylation are also a concomitant of neuropsychiatric diseases such as schizophrenia or depression, and that BDNF gene expression is also strongly associated with these diseases".

    Leibniz Institute for Neurobiology Magdeburg

    The LIN is a research institute dedicated to learning and memory processes in the brain. LIN was founded in 1992 as a successor institution of the Institute of Neurobiology and Brain Research of the Academy of Sciences of the GDR and has been a member of the Leibniz Association since 2011. It is one of the cornerstones of the neuroscience location Magdeburg. The LIN houses modern laboratories for neuroscientific research - from high-tech microscopes to magnetic resonance tomographs.

    Currently, approx..230 people work at LIN, including about 150 scientists from about 28 countries. They study cognitive processes and their pathological disorders in the brain of humans and animals.


    Original publication:

    https://www.nature.com/articles/s41386-020-0780-2


    Images

    The authors of the study
    The authors of the study
    Reinhard Blumenstein
    LIN


    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    The authors of the study


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).