It is generally believed that rapid and reversible DNA methylation in the brain is essential for the stability of long-term memory, but very little is known about how synaptic signals can control DNA methylation to induce permanent changes in plasticity-related gene expression. A new study by Michael R. Kreutz's group at the Leibniz Institute of Neurobiology Magdeburg (LIN) reveals a mechanism by which the activity of synapses controls the protein levels of a de novo DNA methylating enzyme. The study was published in the journal "Neuropsychopharmacology".
The genetic code in our DNA is not "set in stone" but can be changed by biochemical processes. This phenomenon is called epigenetics. DNA methylation is the most important and best-studied epigenetic modification of DNA. Research has shown that DNA methylation affects the fine-tuning of gene expression in response to neuronal activity in the brain. DNMT3A1 is the primary enzyme in the adult brain for de novo methylation of DNA. How is this enzyme regulated by synaptic activity in order to set precisely fitting epigenetic signatures in the DNA?
Neural mechanism creates control
The authors of the study discovered a mechanism that allows synaptic control of DNMT3A1 levels in neurons, thereby creating a time window for reduced DNA do novo methylation at a group of target genes. In order to degrade the enzyme in a targeted manner, it interacts with a protein that is biochemically tagged with a modification called neddylation. This happens, for example, when mice learn to remember the exact placement of objects in an arena. If this neddylation process is blocked, synapses are less plastic and the mice have a much worse memory. "We wanted to know how synapses control DNA methylation in the cell nucleus and why the controlled degradation of the DNA methylation enzyme is so important for memory. We found that one of the target genes is the neuroplasticity factor BDNF, which plays a central role in spatial learning and memory processes," explains first author Gonca Bayraktar. "These findings are exciting because it is known that disorders in DNA methylation are also a concomitant of neuropsychiatric diseases such as schizophrenia or depression, and that BDNF gene expression is also strongly associated with these diseases".
Leibniz Institute for Neurobiology Magdeburg
The LIN is a research institute dedicated to learning and memory processes in the brain. LIN was founded in 1992 as a successor institution of the Institute of Neurobiology and Brain Research of the Academy of Sciences of the GDR and has been a member of the Leibniz Association since 2011. It is one of the cornerstones of the neuroscience location Magdeburg. The LIN houses modern laboratories for neuroscientific research - from high-tech microscopes to magnetic resonance tomographs.
Currently, approx..230 people work at LIN, including about 150 scientists from about 28 countries. They study cognitive processes and their pathological disorders in the brain of humans and animals.
https://www.nature.com/articles/s41386-020-0780-2
The authors of the study
Reinhard Blumenstein
LIN
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Medizin
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).