idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/16/2020 12:18

Jenaer Forschungsteam stellt neuartigen Ansatz 
zur Speicherung von Sonnenenergie vor

Lavinia Meier-Ewert Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Photonische Technologien e. V.

    Die Energie aus der Sonne so effizient zu nutzen und in chemische Energie umzuwandeln wie es die Natur macht, könnte den weltweiten CO2-Ausstoß drastisch verringern. Ein Forschungsteam des Leibniz-Instituts für Photonische Technologien und der Universität Jena ist dieser Vision nun einen Schritt näher gekommen. Die Forschenden haben ein chemisches System entwickelt, das Lichtenergie sammelt und für mindestens 14 Stunden auf einem Molekül speichert. Damit entkoppelt ihr System photochemische Prozesse vom Tag-Nacht-Zyklus — und überwindet somit eine Hürde, die solarbetriebene Photochemie für kontinuierliche industrielle Produktionsprozessen bislang ungeeignet machte.

    Die Natur hat das Problem bereits gelöst: In der Photosynthese wandeln Pflanzen Kohlendioxid mit Hilfe von Sonnenlicht in chemische Verbindungen um — und zwar so, dass die in chemischen Bindungen gespeicherte Sonnenenergie auch dann zur Verfügung steht, wenn es dunkel ist. Forschende versuchen, diesen Prozess nach dem Vorbild der Natur nachzuahmen; allerdings funktioniert die solargetriebene Photochemie mangels geeigneter Speichermöglichkeiten bislang nur bei Helligkeit.

    Molekularer Ansatz ermöglicht lichtgetriebene Photochemie erstmals im Dunkeln

    Das Forschungsteam vom Leibniz-IPHT und der Universität Jena stellt im „Journal of the American Chemical Society“ nun einen molekularen Ansatz zur Speicherung von Sonnenenergie vor, mit dem es erstmals gelingt, photochemische Reaktionen vom Tag-Nacht-Zyklus zu entkoppeln und sie unabhängig vom Tageslicht stattfinden zu lassen. Im Unterschied zu bisherigen Ansätzen, die auf Festkörpermaterialien basieren, erzeugen die Forschenden reaktive Photoredox-Äquivalente auf einem kleinen Molekül. Damit können sie die Lichtenergie nicht nur über eine zuvor nicht erreichte Dauer von mindestens 14 Stunden speichern, sondern sie bei Bedarf auch regenerieren.

    „Die Abhängigkeit von Helligkeit und Dunkelheit war bislang eine große Hürde, wenn es darum ging, die solarbetriebene Photochemie für kontinuierliche industrielle Produktionsprozesse einzusetzen“, erläutert Erstautor Dr. Martin Schulz, der an der Universität Jena sowie in der Abteilung „Funktionale Grenzflächen“ am Leibniz-IPHT forscht. „Wir gehen davon aus, dass unsere Ergebnisse neue Möglichkeiten eröffnen, um Systeme zur Umwandlung und Speicherung von Sonnenenergie sowie für die Photo(redox)katalyse zu erforschen.“

    Hohe Ladekapazität auch nach mehreren Zyklen

    Im chemischen System, das die Jenaer Forschenden im Rahmen des Sonderforschungsbereichs „CataLight“ entwickelten, befinden sich der Photosensibilisator und die Ladungsspeichereinheit auf demselben kleinen Molekül. Dies macht den intermolekularen Ladungstransfer zwischen einem separaten Sensibilisator und einer Ladungsspeichereinheit überflüssig. Das System behält auch nach vier Zyklen Dreiviertel seiner Ladekapazität bei.

    Die Forschenden nutzen einen Kupferkomplex und somit ein Molekül, das auf einem gut verfügbaren Metall basiert, während bisherige Ansätze auf seltene und teure Edelmetalle wie Ruthenium zurückgreifen. Der doppelt reduzierte Kupferkomplex kann nach der photochemischen Aufladung gelagert und als Reagenz in Dunkelreaktionen, etwa der Reduktion von Sauerstoff, verwendet werden.

    Den Ansatz erarbeiteten die Jenaer Forschenden gemeinsam mit Partnern der Universität Ulm, des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden und der Dublin City University. Im Sonderforschungsbereich „CataLight“ („Light-driven Molecular Catalysts in Hierarchically Structured Materials – Synthesis and Mechanistic Studies“) erforschen Wissenschaftlerteams der Universitäten Jena und Ulm nachhaltige Energiewandler nach dem Vorbild der Natur.


    Contact for scientific information:

    Dr. Martin Schulz
    Leibniz-Institut für Photonische Technologien // Abteilung Funktionale Grenzflächen
    Friedrich-Schiller-Universität Jena // Institut für physikalische Chemie
    martin.schulz.1(a)uni-jena.de
    +49 3641 9-48396


    Original publication:

    Martin Schulz, Nina Hagmeyer, Frerk Wehmeyer, et al. (2020), Photoinduced Charge Accumulation and Prolonged Multielectron Storage for the Separation of Light and Dark Reaction. J. Am. Chem. Soc. 2020, August 22, 2020. https://doi.org/10.1021/jacs.0c03779


    Images

    Messaufbau für die Untersuchung der photophysikalischen Eigenschaften, z.B. von Kupfer(I)-Komplexen
    Messaufbau für die Untersuchung der photophysikalischen Eigenschaften, z.B. von Kupfer(I)-Komplexen
    Martin Schulz
    Martin Schulz

    Photoreaktor für die Untersuchung lichtgetriebener Reaktionen, z.B. die Photoreduktion von Kupfer(I)-Komplexen Foto: Martin Schulz
    Photoreaktor für die Untersuchung lichtgetriebener Reaktionen, z.B. die Photoreduktion von Kupfer(I) ...
    Martin Schulz
    Martin Schulz


    Attachment
    attachment icon Lichtgetriebene Elektronenaufnahme durch einen Kupfer(I)-4H-Imidazolatkomplex, Speicherung für einen halben Tag und Elektronenabgabe in einer Dunkelreaktion

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    German


     

    Messaufbau für die Untersuchung der photophysikalischen Eigenschaften, z.B. von Kupfer(I)-Komplexen


    For download

    x

    Photoreaktor für die Untersuchung lichtgetriebener Reaktionen, z.B. die Photoreduktion von Kupfer(I)-Komplexen Foto: Martin Schulz


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).