Die Energie aus der Sonne so effizient zu nutzen und in chemische Energie umzuwandeln wie es die Natur macht, könnte den weltweiten CO2-Ausstoß drastisch verringern. Ein Forschungsteam des Leibniz-Instituts für Photonische Technologien und der Universität Jena ist dieser Vision nun einen Schritt näher gekommen. Die Forschenden haben ein chemisches System entwickelt, das Lichtenergie sammelt und für mindestens 14 Stunden auf einem Molekül speichert. Damit entkoppelt ihr System photochemische Prozesse vom Tag-Nacht-Zyklus — und überwindet somit eine Hürde, die solarbetriebene Photochemie für kontinuierliche industrielle Produktionsprozessen bislang ungeeignet machte.
Die Natur hat das Problem bereits gelöst: In der Photosynthese wandeln Pflanzen Kohlendioxid mit Hilfe von Sonnenlicht in chemische Verbindungen um — und zwar so, dass die in chemischen Bindungen gespeicherte Sonnenenergie auch dann zur Verfügung steht, wenn es dunkel ist. Forschende versuchen, diesen Prozess nach dem Vorbild der Natur nachzuahmen; allerdings funktioniert die solargetriebene Photochemie mangels geeigneter Speichermöglichkeiten bislang nur bei Helligkeit.
Molekularer Ansatz ermöglicht lichtgetriebene Photochemie erstmals im Dunkeln
Das Forschungsteam vom Leibniz-IPHT und der Universität Jena stellt im „Journal of the American Chemical Society“ nun einen molekularen Ansatz zur Speicherung von Sonnenenergie vor, mit dem es erstmals gelingt, photochemische Reaktionen vom Tag-Nacht-Zyklus zu entkoppeln und sie unabhängig vom Tageslicht stattfinden zu lassen. Im Unterschied zu bisherigen Ansätzen, die auf Festkörpermaterialien basieren, erzeugen die Forschenden reaktive Photoredox-Äquivalente auf einem kleinen Molekül. Damit können sie die Lichtenergie nicht nur über eine zuvor nicht erreichte Dauer von mindestens 14 Stunden speichern, sondern sie bei Bedarf auch regenerieren.
„Die Abhängigkeit von Helligkeit und Dunkelheit war bislang eine große Hürde, wenn es darum ging, die solarbetriebene Photochemie für kontinuierliche industrielle Produktionsprozesse einzusetzen“, erläutert Erstautor Dr. Martin Schulz, der an der Universität Jena sowie in der Abteilung „Funktionale Grenzflächen“ am Leibniz-IPHT forscht. „Wir gehen davon aus, dass unsere Ergebnisse neue Möglichkeiten eröffnen, um Systeme zur Umwandlung und Speicherung von Sonnenenergie sowie für die Photo(redox)katalyse zu erforschen.“
Hohe Ladekapazität auch nach mehreren Zyklen
Im chemischen System, das die Jenaer Forschenden im Rahmen des Sonderforschungsbereichs „CataLight“ entwickelten, befinden sich der Photosensibilisator und die Ladungsspeichereinheit auf demselben kleinen Molekül. Dies macht den intermolekularen Ladungstransfer zwischen einem separaten Sensibilisator und einer Ladungsspeichereinheit überflüssig. Das System behält auch nach vier Zyklen Dreiviertel seiner Ladekapazität bei.
Die Forschenden nutzen einen Kupferkomplex und somit ein Molekül, das auf einem gut verfügbaren Metall basiert, während bisherige Ansätze auf seltene und teure Edelmetalle wie Ruthenium zurückgreifen. Der doppelt reduzierte Kupferkomplex kann nach der photochemischen Aufladung gelagert und als Reagenz in Dunkelreaktionen, etwa der Reduktion von Sauerstoff, verwendet werden.
Den Ansatz erarbeiteten die Jenaer Forschenden gemeinsam mit Partnern der Universität Ulm, des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden und der Dublin City University. Im Sonderforschungsbereich „CataLight“ („Light-driven Molecular Catalysts in Hierarchically Structured Materials – Synthesis and Mechanistic Studies“) erforschen Wissenschaftlerteams der Universitäten Jena und Ulm nachhaltige Energiewandler nach dem Vorbild der Natur.
Dr. Martin Schulz
Leibniz-Institut für Photonische Technologien // Abteilung Funktionale Grenzflächen
Friedrich-Schiller-Universität Jena // Institut für physikalische Chemie
martin.schulz.1(a)uni-jena.de
+49 3641 9-48396
Martin Schulz, Nina Hagmeyer, Frerk Wehmeyer, et al. (2020), Photoinduced Charge Accumulation and Prolonged Multielectron Storage for the Separation of Light and Dark Reaction. J. Am. Chem. Soc. 2020, August 22, 2020. https://doi.org/10.1021/jacs.0c03779
Messaufbau für die Untersuchung der photophysikalischen Eigenschaften, z.B. von Kupfer(I)-Komplexen
Martin Schulz
Martin Schulz
Photoreaktor für die Untersuchung lichtgetriebener Reaktionen, z.B. die Photoreduktion von Kupfer(I) ...
Martin Schulz
Martin Schulz
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
Chemie, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch
Messaufbau für die Untersuchung der photophysikalischen Eigenschaften, z.B. von Kupfer(I)-Komplexen
Martin Schulz
Martin Schulz
Photoreaktor für die Untersuchung lichtgetriebener Reaktionen, z.B. die Photoreduktion von Kupfer(I) ...
Martin Schulz
Martin Schulz
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).