idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/26/2020 14:18

A molecular break for root growth

Pressestelle Corporate Communications Center
Technische Universität München

    The dynamic change in root growth of plants plays an important role in their adjustment to soil conditions. Depending on the location, nutrients or moisture can be found in higher or lower soil layers. This is why, depending on the situation, a short or a long root is advantageous. Caroline Gutjahr, Professor of Plant Genetics at the Technical University of Munich (TUM), and her team investigate how plant hormones influence the growth of roots.

    Roots are essential for reaching water and nutrients, for anchorage to the ground, but also for interacting and communicating with microorganisms in the soil. A long root enables the plant to reach deeper, more humid layers of soil, for example during drought. A shallower root with many root hairs is good for phosphate uptake, as phosphate is mostly found in the upper soil layers.

    Caroline Gutjahr, Professor of Plant Genetics at the TUM School of Life Sciences in Weihenstephan, and her team discovered new hormone interactions which influence the growth of plant roots.

    Why some plant roots have long and others have short hairs

    “We found that the protein SMAX1 acts as molecular break for ethylene production”, says Caroline Gutjahr. Ethylene is a plant hormone that is considered to trigger or accelerate the ripening of many fruits and vegetables, but it can also trigger other processes in plants. If less of the gaseous hormone is produced by the plant, the plant is stimulated to grow long roots and short root hairs.

    The suppressor “SMAX1” can be removed by activating the so-called karrikin signaling pathway, which is triggered by another hormone. This switches on the production of ethylene, resulting in short primary roots and elongated root hairs.

    This is the first time that scientists have succeeded in identifying and understanding a molecular process that is switched on by the karrikin signaling pathway and in showing a molecular mechanism, by which this signaling pathway regulates a developmental process in plants.

    Plant diversity is also reflected in molecular mechanisms

    “Surprisingly this mechanism has a significant impact on the roots of the legume Lotus japonicus, the model plant for peas, beans and lentils, on which we conducted our research,” says Gutjahr.

    In contrast, the research team observed a much weaker influence in the roots of another model plant, Arabidopsis thaliana or thale cress, which is related to cabbage plants.

    “This shows that the diversity of plants is not only reflected in their appearance, but also in the effect of their molecular triggers on growth,” the researcher concludes.

    The relevance of improving root growth for plant breeding

    “If we understand more precisely how root growth is regulated at the molecular level and in coordination with environmental stimuli, we can cultivate crops that are better able to cope with unfavorable environmental conditions and thus produce yield even under stress,” explains the scientist.

    This is why her research group is now investigating how the identified hormone signaling pathways (karrikin and ethylene signaling) react to different environmental conditions. They hope to discover how these two signaling pathways collaborate with the sensors that allow plants to perceive various environmental influences to adjust root growth to benefit plant survival and yield.


    Contact for scientific information:

    Prof. Dr. Caroline Gutjahr
    Assistant Professorship of Plant Genetics
    TUM School of Life Sciences Weihenstephan
    Technical University of Munich
    Email: caroline.gutjahr(at)tum.de
    https://www.genetik.wzw.tum.de/


    Original publication:

    Carbonnel, S., Das, D., Varshney, K., Kolodziej, M.C., Villaécija-Aguilar, J.A., Gutjahr, C. (2020): The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. In: PNAS, 117: 21757-21765.
    https://www.pnas.org/content/117/35/21757


    More information:

    https://www.professoren.tum.de/en/gutjahr-caroline (The work on which this publication is based was funded by the German Research Foundation (DFG) within the Emmy Noether Program (AG Gutjahr). A co-author (Kartikye Varshney) has also received a DAAD scholarship for doctoral students.)
    https://mediatum.ub.tum.de/1576953 (High resolution images)
    https://www.tum.de/nc/en/about-tum/news/press-releases/details/36257/ (Press release)


    Images

    Prof. Caroline Gutjahr
    Prof. Caroline Gutjahr
    U. Benz / TUM
    Free for use in reporting on TUM, with the copyright noted.

    Prof. Dr. Caroline Gutjahr in the laboratory during the experiments in the climate chamber.
    Prof. Dr. Caroline Gutjahr in the laboratory during the experiments in the climate chamber.
    U. Benz / TUM
    Free for use in reporting on TUM, with the copyright noted.


    Attachment
    attachment icon Plant root

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Prof. Caroline Gutjahr


    For download

    x

    Prof. Dr. Caroline Gutjahr in the laboratory during the experiments in the climate chamber.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).