idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/29/2020 11:47

Smart bottle brushes: Neutrons make structural changes in molecular brushes visible

Dr. Andreas Battenberg Corporate Communications Center
Technische Universität München

    They look like microscopic bottle brushes: Polymers with a backbone and tufts of side arms. This molecular design gives them unusual abilities: For example, they can bind active agents and release them again when the temperature changes. With the help of neutrons, a research team from the Technical University of Munich (TUM) has now succeeded to unveil the changes in the internal structure in course of the process.

    "The structure of the bottle-brush polymers, which are only nanometers in size, cannot be investigated using classical optical methods: It can be seen that an aqueous solution containing these polymers becomes turbid at a certain temperature. But why this is the case, and how the backbone and the side arms stretch out into in the water or contract, has not yet been clarified," reports Prof. Christine Papadakis.

    There is a simple reason why scientists would like to know more about the inner life of bottle-brush polymers: The fluffy molecules, which consist of different polymer chains and abruptly change their solubility in water at a certain temperature, are promising candidates for a variety of applications.

    For example, they could be used as catalysts to accelerate chemical reactions, as molecular switches to open or close tiny valves, or as transport media for medical drugs – the molecular brushes could thus bring pharmaceuticals to a center of inflammation and, because the temperature is elevated there, release them directly at the site of action.

    However, the basic prerequisite for using the brush molecules is that their behavior can be programmed: Theoretically, chemists can use a combination of water-soluble and water-insoluble building blocks to determine precisely at what temperature the polymers clump together and the liquid in which they were just dissolved becomes cloudy. "In practice, however, you have to know exactly how and under what conditions the structure of the polymers changes if you want to design smart brush molecules," explains Papadakis.

    Neutrons reveal their molecular inner life

    Together with her team in the Soft Matter Physics Group at the Technical University of Munich, she has now been able to visualize for the first time the changes that bottle-brush polymers with arms made of two different types of building blocks undergo when the temperature reaches the cloud point.

    The scientists used neutron radiation from the Research Neutron Source Heinz Maier-Leibnitz (FRM II) on the campus Garching in a special instrument for small angle neutron scattering, which is operated by the Forschungszentrum Jülich

    This method is particularly well suited for the investigation because neutrons are electrically neutral and therefore penetrate matter easily. There they are scattered by the atomic nuclei. The images of the brush molecules thus produced are more exact than x-rays and more detailed than images from scanning electron microscopy.

    When brushes clump together

    The thermoresponsive brush molecules studied by Papadakis' team were synthesized by chemists from the National Hellenic Research Foundation in Greece and the Technische Universität Dresden, respectively.

    In the first step, the samples were dissolved in water, then gradually heated up to the cloud point and irradiated with neutrons. A detector monitored the scattered radiation. From the scattering signal, the researchers were able to deduce the structural changes.

    Depending on the structure of the polymers, water molecules split-off already before the cloud point was reached. At the cloud point itself, the molecular structure of the polymers collapsed. What remained were water-insoluble polymer coils, which formed loose or compact clusters depending on the residual water content.

    "The results will help to develop bottle-brush polymers suitable for practical use," the physicist is convinced. "If you know exactly how polymers change at the cloud point, you can optimize their chemical structure for different applications."

    ###

    The work was done in cooperation with the Faculty of Chemistry and Food Chemistry of the Technische Universität Dresden and the Theoretical and Physical Chemistry Institute of the National Hellenic Research Foundation, Greece. The project was funded by the German Research Foundation.


    Contact for scientific information:

    Prof. Dr. Christine Papadakis
    Professorship Soft Matter Physics
    Technical University of Munich
    James-Franck-Str. 1, 85748 Garching, Germany
    Tel.: +49 89 289 12447 – E-mail: papadakis@tum.de


    Original publication:

    Jia-Jhen Kang, Kaltrina Shehu, Clemens Sachse, Florian A. Jung, Chia-Hsin Ko, Lester C. Barnsley, Rainer Jordan, Christine M. Papadakis:
    A molecular brush with thermoresponsive poly(2-ethyl-2-oxazoline) side chains: a structural investigation
    Colloid and Polymer Science, Aug. 5, 2020

    Jia-Jhen Kang, Florian A. Jung, Chia-Hsin Ko, Kaltrina Shehu, Lester C. Barnsley, Fabian Kohler, Hendrik Dietz, Junpeng Zhao, Stergios Pispas, and Christine M. Papadakis:
    Thermoresponsive Molecular Brushes with Propylene Oxide/ Ethylene Oxide Copolymer Side Chains in Aqueous Solution
    Macromolecules 2020, 53, 4068−4081, Aug. 8, 2020


    More information:

    https://www.groups.ph.tum.de/en/softmatter/soft-matter-physics/ Homepage of the research group
    https://www.tum.de/nc/en/about-tum/news/press-releases/details/36275/ Press release on the TUM website
    https://www.frm2.tum.de/en/ Research Neutron Source Heinz Maier-Leibnitz
    https://mlz-garching.de/englisch.html Heinz Maier-Leibnitz Zentrum
    https://doi.org/10.1007/s00396-020-04704-6 Original publication I.
    https://doi.org/10.1021/acs.macromol.0c00263 Original publication II.


    Images

    Thermoresponsive molecular brushes with propylene oxide/ethylene oxide copolymer side chains in aqueous solution.
    Thermoresponsive molecular brushes with propylene oxide/ethylene oxide copolymer side chains in aque ...
    Reiner Müller / TUM

    Dr. Lester Barnsley, instrument scientist at Forschungszentrum Jülich, at the small-angle neutron scattering system KWS-1 of the Heinz Maier-Leibnitz Zentrum at the Heinz Maier-Leibnitz Research Neutron Source at the Technical University of Munich
    Dr. Lester Barnsley, instrument scientist at Forschungszentrum Jülich, at the small-angle neutron sc ...
    Wenzel Schürmann / TUM


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Thermoresponsive molecular brushes with propylene oxide/ethylene oxide copolymer side chains in aqueous solution.


    For download

    x

    Dr. Lester Barnsley, instrument scientist at Forschungszentrum Jülich, at the small-angle neutron scattering system KWS-1 of the Heinz Maier-Leibnitz Zentrum at the Heinz Maier-Leibnitz Research Neutron Source at the Technical University of Munich


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).