idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/08/2021 15:48

Possible explanation for more efficient maize growth

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Biology: Publication in The Plant Cell

    Plant researchers at Heinrich Heine University Düsseldorf (HHU) have investigated the transport of compounds in maize. They focused on the mechanism used to transport the products of photosynthesis for further distribution in the plant through its phloem loading pathways. In the current edition of the journal “The Plant Cell”, they describe how this mechanism has potentially created a special evolutionary advantage for maize.

    Maize has a significantly higher productivity rate compared with many other crops. The particular leaf anatomy and special form of photosynthesis (referred to as ‘C4’) developed during its evolution allow maize to grow considerably faster than comparable plants. As a result, maize needs more efficient transport strategies to distribute the photoassimilates produced during photosynthesis throughout the plant.

    Researchers at HHU have now discovered a phloem loading mechanism that has not been described before – the bundle sheath surrounding the vasculature as the place for the actual transport of compounds such as sugars or amino acids. The development of this mechanism could have been the decisive evolutionary step towards the higher transport rate that has made maize plants especially successful and useful. It is also likely linked to the more effective C4 photosynthesis used by maize compared with other plants, which only use C3 photosynthesis. The study was led by Dr. Ji Yun Kim and Prof. Dr. Wolf B. Frommer from the Institute of Molecular Physiology at HHU.

    Plant leaves have different structures on the upper (adaxial) and lower (abaxial) sides, and each side performs different tasks. In maize, for example, sucrose transporters (SWEET) act in the `bundle sheath cells’ (which frame the vascular bundle like a wreath) on the abaxial side of the leaf. In the model plant Arabidopsis thaliana, sugars released via SWEETs from phloem parenchyma cells are transported directly into the neighbouring companion cells via active transport. In maize, sugar is released in the direction of phloem by two large bundle sheath cells. The large surface of the bundle sheath cells compared to phloem parenchyma allows much higher transport rates. Compared to Arabidopsis, maize could transport sugar more effectively.

    Doctoral student and first author Margaret Bezrutczyk from HHU emphasize: “The bundle sheath cells arranged in a wreath look the same at first glance. The single cell sequencing approach we used made it possible for the first time to distinguish between different types of bundle sheath cells in a maize leaf. With this technology, we expect that more cell types, especially those in the vascular bundles will be discovered in the future.”

    Institute Head Prof. Frommer emphasizes the significance of the finding, saying: “Maize plants are extremely productive due to their C4 photosynthesis. It is conceivable that the productivity of rice or other crops can be increased by transferring the loading mechanism from maize to these crops.”


    Original publication:

    Margaret Bezrutczyk, Nora R. Zöllner, Colin P. S. Kruse, Thomas Hartwig, Tobias Lautwein, Karl Köhrer, Wolf B. Frommer and Ji-Yun Kim, Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves, The Plant Cell, 2021

    DOI: 10.1093/plcell/koaa055


    Images

    Leaves of a maize plant.
    Leaves of a maize plant.
    Margaret Bezrutczyk
    HHU / Margaret Bezrutczyk

    Three of the authors of the study about maize in The Plant Cell from Prof. Dr. Wolf B. Frommer’s working group (from left to right): Dr. Ji-Yun Kim, Nora Zöllner, Margaret Bezrutczyk.
    Three of the authors of the study about maize in The Plant Cell from Prof. Dr. Wolf B. Frommer’s wor ...
    Christoph Kawan
    HHU / Christoph Kawan


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    English


     

    Leaves of a maize plant.


    For download

    x

    Three of the authors of the study about maize in The Plant Cell from Prof. Dr. Wolf B. Frommer’s working group (from left to right): Dr. Ji-Yun Kim, Nora Zöllner, Margaret Bezrutczyk.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).