idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/11/2021 08:30

Astrocytes influence behaviour

Blandina Mangelkramer Presse und Kommunikation
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and their colleagues in Spain have discovered that astrocytes in the prefrontal cortex (PFC) play an important role in the brain in goal-directed behaviour when weighing up the advantages and disadvantages of a decision. They have recently published their findings in the journal Nature Neuroscience.

    Up to now, scientists have often presumed that only neurons, which are the cells responsible for carrying electrical impulses in the brain, play a role in decision-making processes. However, a collaborative project involving the laboratories of Prof. Dr. Alexey Ponomarenko, Professorship for Physiology at FAU, and Dr. Gertrudis Perea from the Cajal Institute in Madrid, Spain in partnership with the New York University Langone Medical Center, has now proven that astrocytes play the central role in decision making. Astrocytes are a type of glial cell, which form the scaffolding for nerve cells. Experiments conducted by the study’s lead author, Dr. Sara Mederos, demonstrated that the star-shaped cells in the prefrontal cortex generate the balance required between signal transmitting neurons and inactive neurons. This equilibrium needs to be in place for the brain to make decisions quickly and successfully.

    The researchers also discovered that astrocytes react to neurotransmitter signals in the brain which neural networks need to transmit signals to each other. Specifically, astrocytes respond to the inhibiting neurotransmitter GABA. Experiments with mice in the laboratory showed that the mice made better decisions when the neurotransmitter in the astrocytes positively influenced rapid gamma oscillation. Brain oscillation is a type of internal timekeeper for neuron activity, as it sets the rhythm at which cells function. When the research team used light impulses to increasingly stimulate astrocytes, this improved the gamma oscillation and thus the overall cognitive performance. Optogenetics is a proven technique for making cells sensitive to light by means of genetic modification. Scientists are then able to stimulate these cells using light.

    The research project showed that brain functions that depend on astrocytes can be improved using optogenetics which leads to quicker and more precise decisions. The effectiveness of brain oscillation modulation using light impulses is currently being investigated in several fields, for example in the treatment of Alzheimer’s. This research into the function of astrocytes will provide valuable input for practical applications.


    Contact for scientific information:

    Prof. Dr. Alexey Ponomarenko
    Professorship for Physiology
    +49 9131 85-29302
    alexey.ponomarenko@fau.de


    Original publication:

    https://doi.org/10.1038/s41593-020-00752-x


    Images

    Criteria of this press release:
    Journalists
    Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).