idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/12/2021 10:00

Comprehensive characterisation of vascular structure in plants

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Biology: Key publication in The Plant Cell

    With funding from the Alexander von Humboldt Foundation, two teams of plant researchers and bioinformatics researchers under the leadership of Heinrich Heine University Düsseldorf (HHU) have succeeded for the first time in identifying the functions of the different cell types in the leaf vasculature of plants. They present their fundamental findings in the current edition of the journal “The Plant Cell”.

    The leaf vasculature of plants plays a key role in transporting solutes from where they are made – for example from the plant cells driving photosynthesis – to where they are stored or used. Sugars and amino acids are transported from the leaves to the roots and the seeds via the conductive pathways of the phloem.

    Phloem is the part of the tissue in vascular plants that comprises the sieve elements – where actual translocation takes place – and the companion cells as well as the phloem parenchyma cells. The leaf veins consist of at least seven distinct cell types, with specific roles in transport, metabolism and signalling.

    Little is known about the vascular cells in leaves, in particular the phloem parenchyma. Two teams of Alexander von Humboldt professorship students from Düsseldorf and Tübingen, a colleague from Champaign Urbana in Illinois, USA, and a chair of bioinformatics from Düsseldorf have presented the first comprehensive analysis of the vascular cells in the leaves of thale cress (Arabidopsis thaliana) using single cell sequencing.

    The team led up by Alexander von Humboldt Professor Dr. Marja Timmermans from Tübingen University was the first to use single cell sequencing in plants to characterise root cells. In collaboration with Prof. Timmermans’ group, researchers from the Alexander von Humboldt Professor Dr. Wolf Frommer in Düsseldorf succeeded for the first time in isolating plant cells to create an atlas of all regulatory RNA molecules (the transcriptome) of the leaf vasculature. They were able to define the role of the different cells by analysing the metabolic pathways.

    Among other things, the research team proved for the first time that the transcript of sugars (SWEET) and amino acids (UmamiT) transporters are found in the phloem parenchyma cells which transport these compounds from where they are produced to the vascular system. The compounds are subsequently actively imported into the sieve element companion cell complex via the second group of transporters (SUT or AAP) and then exported from the source leaf.

    These extensive investigations involved close collaborations with HHU bioinformatics researchers in Prof. Dr. Martin Lercher’s working group. Together they were able to determine that phloem parenchyma and companion cells have complementary metabolic pathways and are therefore in a position to control the composition of the phloem sap.

    First author and leader of the work group Dr. Ji-Yun Kim from HHU explains: “Our analysis provides completely new insights into the leaf vasculature and the role and relationship of the individual leaf cell types.” Institute Head Prof. Frommer adds: “The cooperation between the four working groups made it possible to use new methods to gain insights for the first time into the important cells in plant pathways and to therefore obtain a basis for a better understanding of plant metabolism.”


    Original publication:

    Ji-Yun Kim, Efthymia Symeonidi, Tin Yau Pang, Tom Denyer, Diana Weidauer, Margaret Bezrutczyk, Manuel Miras, Nora Zöllner, Thomas Hartwig, Michael M. Wudick, Martin Lercher, Li-Qing Chen, Marja C.P Timmermans & Wolf B. Frommer, Distinct identities of leaf phloem cells revealed by single cell transcriptomics, The Plant Cell, 2021

    DOI: 10.1093/plcell/koaa060


    Images

    Isolated vascular cells of Arabidopsis; phloem parenchyma cells are labeled in cyan.
    Isolated vascular cells of Arabidopsis; phloem parenchyma cells are labeled in cyan.
    Ji-Yun Kim
    HHU / Ji-Yun Kim

    Part of the Düsseldorf research team (from left): Dr. Ji-Yun Kim, Prof. Dr. Wolf Frommer, Diana Weidauer.
    Part of the Düsseldorf research team (from left): Dr. Ji-Yun Kim, Prof. Dr. Wolf Frommer, Diana Weid ...

    HHU / Institute of Molecular Physiology


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Isolated vascular cells of Arabidopsis; phloem parenchyma cells are labeled in cyan.


    For download

    x

    Part of the Düsseldorf research team (from left): Dr. Ji-Yun Kim, Prof. Dr. Wolf Frommer, Diana Weidauer.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).