idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/25/2021 16:14

Epilepsy research focused on astrocytes

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Neurobiology: Publication in the Journal of the Society for Neuroscience

    A significant number of epilepsy patients does not respond to currently available drugs. A collaboration between researchers in Japan and at the Heinrich Heine University Düsseldorf (HHU) now addressed a cell type in the brain that has so far not received much attention in epilepsy therapy. In the current edition of the Journal of Neuroscience, they describe that astrocytes might be a potential new target to better treat this disease.

    During epileptic seizures, a large number of nerve cells in the brain fire excessively and in synchrony. This hyperactivity may lead to uncontrolled shaking of the body and involve periods of loss of consciousness. While about two thirds of patients respond to anti-epileptic medication, the remainder is refractory to medical treatment and shows drug-resistance. These patients are in urgent need for new therapeutic strategies.

    Together with colleagues in Japan, Prof. Dr. Christine Rose and her doctoral student Jan Meyer from the Institute of Neurobiology at HHU have performed a study to address the cellular mechanisms that promote the development of epilepsy. While up to now, most studies and anti-epileptic drugs targeted nerve cells (neurons), this research team focused on a class of glial cells known as astrocytes.

    Glial cells account for approximately half of all cells in the brain. There are different types of glial cells, which perform different functions. Astrocytes control the local environment and are responsible for the ion balance in the brain, but also play an important role in signal transmission between neurons.

    In their recent paper, the researchers show that epileptic discharges lead to a rise in the pH of astrocytes, that is in their intracellular ‘alkalisation’. The change in pH disrupts the communication within the intercellular astrocyte networks. This reduced communication between astrocytes appears to exacerbate epileptic activity of neurons.

    This finding points towards a potential new target for suppressing epileptogenesis at a very early stage, namely by using drugs to suppress changes in astrocytic pH accompanying neuronal activity.

    The researchers were able to confirm this option by showing that animals which were given such drugs suffered less severely from epileptic hyperexcitability than untreated animals.
    Prof. Rose said: “This observation is very intriguing. But it still needs to be established whether or not it can be transferred to humans. And it will take a very long time before any potential drug can be developed and be really used in the clinics.”

    The research was carried out as a collaboration between the HHU and three universities in Japan (Keio University and Tokyo Medical and Dental University in Tokyo, Tohoku University in Sendai) as part of the “Young Glia” programme of the DFG-Priority Programme SPP 1757 “Functional Specialisations of Neuroglia” coordinated by Prof. Rose. This programme promotes collaboration between German and Japanese laboratories. In particular, it encourages and assists young scientists in realising their own bi-national research projects. For example, the HHU doctoral student Jan Meyer travelled to Japan, while Mariko Onodera from Tohoku University spent two periods working at the Institute of Neurobiology in Düsseldorf.


    Original publication:

    Mariko Onodera, Jan Meyer, Kota Furukawa, Yuichi Hiraoka, Tomomi Aida, Kohichi Tanaka, Kenji F. Tanaka, Christine R. Rose, and Ko Matsui, Exacerbation of epilepsy by astrocyte alkalization and gap junction uncoupling, Journal of Neuroscience, 2021

    DOI: 10.1523/JNEUROSCI.2365-20.2020


    More information:

    https://www.jneurosci.org/content/early/2021/01/19/JNEUROSCI.2365-20.2020


    Images

    Mariko Onodera and Jan Meyer perform an experiment with potassium-sensitive microelectrodes in the Institute of Neurobiology at HHU.
    Mariko Onodera and Jan Meyer perform an experiment with potassium-sensitive microelectrodes in the I ...
    Institute of Neurobiology
    HHU / Institute of Neurobiology

    Prof. Dr. Christine Rose, Head of the Institute of Neurobiology.
    Prof. Dr. Christine Rose, Head of the Institute of Neurobiology.
    Christoph Kawan
    HHU / Christoph Kawan


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Mariko Onodera and Jan Meyer perform an experiment with potassium-sensitive microelectrodes in the Institute of Neurobiology at HHU.


    For download

    x

    Prof. Dr. Christine Rose, Head of the Institute of Neurobiology.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).