idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/02/2021 10:34

KI-System erkennt SARS-CoV-2 auf CT-Scans: DFKI stellt Methode zur bildbasierten Diagnose von Corona vor

Andrea Fink DFKI Bremen
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

    Neben den verbreiteten PCR-Tests zur Diagnose von Infektionen mit SARS-CoV-2 lässt sich das Coronavirus auch auf Computertomographie-Scans erkennen. Durch eine neue Methode in der automatisierten Bilderkennung kann diese Diagnoseform präzisiert und für das medizinische Personal nachvollziehbarer gemacht werden. In einer internationalen Kooperation hat der DFKI-Forschungsbereich Interaktives Maschinelles Lernen (IML) ein interaktives KI-System entwickelt, das mit einer Erfolgsrate von 92 Prozent auf einem speziellen, öffentlich verfügbaren Testdatensatz eine der weltweit präzisesten automatischen Diagnosen von SARS-CoV-2 anhand von CT-Scans ermöglicht.

    Zur Erkennung des Coronavirus SARS-CoV-2 gibt es neben den weltweit eingesetzten PCR-Tests (Polymerase-Kettenreaktion) noch weitere Diagnosemöglichkeiten: Die Erkrankung lässt sich auch anhand von Computertomographie-Scans nachweisen – wozu auch Künstliche Intelligenz eingesetzt werden kann. Ein KI-System kann nicht nur die CT-Scans von Covid-19-Patientinnen und Patienten aus einem Datensatz herausfiltern, sondern zudem einschätzen, welche Bildbereiche besonders auffällig sind. In einem neuen Forschungsvorhaben haben Prof. Dr.-Ing. Daniel Sonntag, Leiter des Forschungsbereichs Interaktives Maschinelles Lernen (IML) des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI), und Wissenschaftler Duy Nguyen gemeinsam mit Forschenden der Dublin City University (Irland), der University of California, Berkeley (USA), der VNUHCM-University of Science (Vietnam) und des Max-Planck-Instituts für Informatik einen neuen Prototyp zur automatischen Erkennung von SARS-CoV-2-Infektionen auf CT-Scans entwickelt.

    In einem gemeinsamen Paper, bei dem Herr Duy Nguyen Erstautor ist und das im Rahmen des „Trustworthy AI for Healthcare“-Workshops der heute beginnenden 35. AAAI Conference on Artificial Intelligence vorgestellt wird, präsentieren die Forschenden einen Ansatz, um die Diagnose durch das Zusammenführen verschiedener Datenquellen zu verbessern und Fehler zu minimieren. In Testverfahren mit Forschungsdaten erreicht die Methode eine Trefferquote von 92 Prozent – nach aktuellem Stand eines der weltweit besten Ergebnisse in der automatischen Bilderkennung von Infektionen mit SARS-CoV-2 auf einem CT-Scan-Datensatz. Das Besondere an dem Verfahren ist, dass es Ärztinnen und Ärzten visuell darstellt, worauf die Diagnose basiert.

    Diagnosen beschleunigen, präzisieren und nachvollziehbarer machen

    Die hinterlegte Abbildung zeigt den CT-Scan einer Lunge (links), der durch das Verfahren der automatischen Bilderkennung analysiert wird. Zudem können Patientinnen und Patienten durch eine sogenannte Milchglastrübung (Mitte) auf akute und chronische Krankheiten untersucht werden. Auf einer sogenannten Heatmap (rechts) markiert das KI-System schließlich den Bereich, auf dem die Entscheidung basiert. Die visuelle Erklärung des Assistenzsystems hat zum Ziel, die Diagnose nachvollziehbarer zu machen und Medizinerinnen und Medizinern wichtige Einsichten zu liefern: Die automatische Bilderkennung mit hoher Präzision hilft, die Infektion einzuschätzen und die Behandlung zu planen. Gerade bei Engpässen in der medizinischen Versorgung kann diese Entscheidungshilfe ein bedeutender Vorteil ein.

    Das Paper mit dem Titel „An attention mechanism using multiple knowledge sources for COVID-19 detection from CT images” kann auf der Website des DFKI abgerufen werden (https://www.dfki.de/web/forschung/projekte-publikationen/publikationen-uebersich...). Die nächste technische Erweiterung ist bereits in der Entwicklung und wurde bei der International Joint Conference on Artificial Intelligence (IJCAI) 2021 zur Begutachtung eingereicht.

    Pressematerial:
    Unter https://cloud.dfki.de/owncloud/index.php/s/p5tsMAQXoNsLpcb finden Sie die im Text erwähnte Abbildung. Sie können diese gerne für Ihre Presseveröffentlichung unter Angabe der Quelle „DFKI GmbH“ verwenden. Bitte beachten Sie hierzu die hinterlegten Angaben zur Bildunterschrift und zur Quelle.

    Pressekontakt
    Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
    Team Unternehmenskommunikation Niedersachsen
    Telefon: 0421 17845 4180
    E-Mail: uk-ni@dfki.de


    Contact for scientific information:

    Prof. Dr.-Ing. Daniel Sonntag
    Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)
    Interaktives Maschinelles Lernen
    Telefon: 0681 85775 5254
    E-Mail: Daniel.Sonntag@dfki.de


    Original publication:

    https://www.dfki.de/web/forschung/projekte-publikationen/publikationen-uebersich...


    More information:

    https://aaai.org/Conferences/AAAI-21/


    Images

    Criteria of this press release:
    Journalists
    Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).