idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/12/2021 09:50

New synthetic peptides could attenuate atherosclerosis

Dr. Katharina Baumeister Corporate Communications Center
Technische Universität München

    Atherosclerosis, a lipid-triggered chronic inflammatory disease of our arteries, is the main cause of strokes and heart attacks. An international team of researchers led by the Technical University of Munich (TUM) and the LMU University Hospital has developed novel synthetic peptides that can help to prevent atherosclerosis in vitro, that is in the test tube, as well as in animal models.

    Research over the last 20 years has shown that atherosclerosis is a chronic inflammatory condition of the arterial blood vessel wall. Soluble mediators such as cytokines and chemokines are pivotal players in this disease, promoting vascular inflammation. However, the development of anti-inflammatory therapeutics directed against such mediators that could prevent atherosclerosis has proven difficult, despite promising clinical studies in the recent past.

    Previous anti-inflammatory therapeutic strategies to prevent atherosclerosis, heart attacks, strokes, rheumatoid arthritis and other inflammatory diseases have mainly been based on antibodies and small molecule drugs. The Munich-based research team has now designed and chemically synthesized short chains of amino acids – i.e. peptides – that function like a minimized soluble chemokine receptor. In animal models, these peptides can block atherosclerosis.

    Researchers design a new class of peptides against atherosclerosis

    Chemokines orchestrate the migration of immune cells in our bodies. They are key players in inflammatory diseases, including atherosclerosis; and this is why they are of great interest to biomedical researchers.

    The peptides designed and synthesized by the Munich researchers mimic certain chemokine receptors and are able to specifically inhibit chemokine mechanisms that promote atherosclerosis, whereas chemokine mechanisms that control important physiological processes in the body are not affected – one could say they are “spared”.

    Previous studies have shown the effectiveness of therapeutics related to cytokines and chemokines. However, these drugs, not only interfered with the effect of these mediators on atherosclerosis, but also suppressed their beneficial effects, for example those related to the host defense against infections.

    ”The mini-CXCR4 mimics we have developed are able to selectively differentiate between two different chemokines that target the same receptor – in this case between the atypical chemokine MIF and the classical chemokine CXCL12. This enables them to specifically block pathways underlying atherosclerosis,” explained Aphrodite Kapurniotu, Professor for Peptide Biochemistry at TUM.

    Peptide therapeutics are suitable and inexpensive

    ”Peptide-based therapeutics are often considered less stable, as peptides may get rapidly degraded in the body by enzymes called proteases. However, we can apply various state-of-the-art approaches of peptide chemistry to improve the stability of peptides, for example by introducing unnatural amino acids into the peptide sequence,” Prof. Kapurniotu added.

    ”So far, our approach was validated only in an animal model of atherosclerosis, but future clinical applications seem possible, in particular also due to the fact that peptide-based therapeutics are substantially less expensive than antibodies,“ said Prof. Jürgen Bernhagen from the Institute for Stroke and Dementia Research (ISD) at the LMU University Hospital.

    Therapeutic potential for inflammation diseases

    The Munich researchers view these results as a „proof-of-principle“ of their approach. In fact, their findings show that concepts based on mini-chemokine-receptor mimics are feasible and suggest that this kind of concept could potentially be applied to other chemokines as well.

    Thus, the new molecular concept could bear therapeutic potential for atherosclerosis and other inflammatory diseases.

    More information:

    This is a cooperative study by Prof. Aphrodite Kapurniotu’s research group (TUM) and scientists at the Institute for Stroke and Dementia Research (ISD) of the LMU Hospital (Prof. Jürgen Bernhagen) as well as the cooperating laboratories of Prof. Christian Weber (Director of the Institute for Prophylaxis and Epidemiology of Circulatory Diseases at LMU and Spokesman of the DFG Collaborative Research Center 1123 – “Atherosclerosis”), Prof. Lars Mägdefessel and Prof. Hans-Henning Eckstein (Clinic for Vascular Surgery at TUM), Prof. Martin Dichgans (ISD, LMU Hospital), and Prof. Richard Bucala (Yale University).

    TUM and LMU filed a patent for the underlying molecular concept (i.e. the novel synthetic peptides), which is marketed by BayPat.

    This research received support from the German Research Foundation (DFG) within the framework of the Collaborative Research Center SFB1113 “Atherosclerosis”, the DFG-funded SyNergy Cluster of Excellence, and the National Institute of Health (NIH).


    Contact for scientific information:

    Prof. Dr. Aphrodite Kapurniotu
    Technical University of Munich
    TUM School of Life Sciences
    Division of Peptide Biochemistry
    Campus Weihenstephan
    Tel.: 0049-8161-713542
    e-Mail: akapurniotu@wzw.tum.de
    https://www.pbch.wzw.tum.de/home/
    https://www.professoren.tum.de/en/kapurniotu-aphrodite

    Prof. Dr. Jürgen Bernhagen
    Hospital of the Ludwig-Maximilians-University (LMU) Munich
    Institute for Stroke and Dementia Research (ISD)
    Chair of Vascular Biology
    Campus Großhadern
    Telefon: +49 (0)89 4400 – 46151
    E-Mail: juergen.bernhagen@med.uni-muenchen.de
    https://www.isd-research.de/bernhagen-lab


    Original publication:

    Christos Kontos, Omar El Bounkari, Christine Krammer, Dzmitry Sinitski, Kathleen Hille, Chunfang Zan, Guangyao Yan, Sijia Wang, Ying Gao, Markus Brandhofer, Remco T.A. Megens, Adrian Hoffmann, Jessica Pauli, Yaw Asare, Simona Gerra, Priscila Bourilhon, Lin Leng, Hans-Henning Eckstein, Wolfgang E. Kempf, Jaroslav Pelisek, Ozgun Gokce, Lars Maegdefessel, Richard Bucala, Martin Dichgans, Christian Weber, Aphrodite Kapurniotu & Jürgen Bernhagen:
    Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting.
    Nature Communications, 11, 5981 (2020) – DOI: 10.1038/s41467-020-19764-z


    More information:

    https://doi.org/10.1038/s41467-020-19764-z (Publication)
    https://www.tum.de/nc/en/about-tum/news/press-releases/details/36446/ (News release)
    https://www.wzw.tum.de/index.php?id=2&L=1 (TUM School of Life Sciences)


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).