idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/24/2021 09:09

Künstliche Intelligenz verstehbar machen – Erklärprozesse gestalten

Nina Reckendorf Stabsstelle Presse und Kommunikation
Universität Paderborn

    Wissenschaftler der Universitäten Paderborn und Bielefeld erforschen neue Form der Mensch-Maschine-Interaktion

    Bewerbungen aussortieren, Röntgenbilder begutachten, eine neue Songliste vorschlagen – die Mensch-Maschine-Interaktion ist inzwischen fester Bestandteil des modernen Lebens. Grundlage für solche Prozesse künstlicher Intelligenz (KI) sind algorithmische Entscheidungsfindungen. Da diese in der Regel aber schwer nachzuvollziehen sind, bringen sie häufig nicht den erhofften Nutzen mit sich. Um das zu ändern, diskutieren Wissenschaftler der Universitäten Paderborn und Bielefeld, wie die Erklärbarkeit künstlicher Intelligenz verbessert und an die Bedürfnisse der Menschen angepasst werden kann. Der Ansatz wurde jetzt in dem renommierten Journal „IEEE Transactions on Cognitive and Developmental Systems“ veröffentlicht. Die Forscher stellen Erklären dabei als eine soziale Praktik vor, bei der beide Seiten den Prozess des Verstehens gemeinsam konstruieren.

    Erklärbarkeitsforschung

    „Künstliche Systeme sind komplex geworden. Das ist ein ernsthaftes Problem – insbesondere dann, wenn Menschen für computerbasierte Entscheidungen verantwortlich gemacht werden", betont Prof. Dr. Philipp Cimiano, Informatiker der Universität Bielefeld. Gerade bei Vorhersagen im Bereich der Medizin oder der Rechtsprechung sei es notwendig, die maschinengesteuerte Entscheidungsfindung nachzuvollziehen, so Cimiano weiter. Zwar gebe es bereits Ansätze, die eine Erklärbarkeit entsprechender Systeme zum Gegenstand hätten, ausreichend sei das aber noch lange nicht. Auch Prof. Dr. Katharina Rohlfing von der Universität Paderborn bestätigt den dringenden Handlungsbedarf: „Bürger haben ein Recht darauf, dass algorithmische Entscheidungen transparent gemacht werden. Das Anliegen ist nicht ohne Grund Gegenstand der General Data Protection-Verordnung der Europäischen Union.“ Das Ziel, Algorithmen zugänglich zu machen, ist Kern der sogenannten „eXplainable Artificial Intelligence (XAI)“: „Bei der Erklärbarkeitsforschung stehen Transparenz und Interpretierbarkeit aktuell als gewünschte Ergebnisse im Mittelpunkt“, so Rohlfing über den Stand der Forschung.

    Entscheidungsfindung nachvollziehen

    Die an der Veröffentlichung beteiligten Wissenschaftler gehen einen Schritt weiter und untersuchen computerbasierte Erklärungen aus unterschiedlichen Blickwinkeln. Dabei sehen sie es als gesetzt an, dass Erklärungen nur dann für die Anwender nachvollziehbar sind, wenn sie nicht nur für sie, sondern auch mit ihnen entstehen: „Wir wissen aus vielen Alltagssituationen, dass eine gute Erklärung für sich nichts bringt, wenn die Erfahrungen der anderen Seite unberücksichtigt bleiben. Wer sich wundert, warum seine Bewerbung durch den Algorithmus aussortiert wurde, möchte normalerweise nichts über die Technologie des maschinellen Lernens erfahren, sondern fragt nach der Datenverarbeitung in Bezug auf die eigenen Qualifikationen“, erklärt Rohlfing.

    „Wenn Menschen miteinander interagieren, sorgt der Austausch zwischen den Beteiligten dafür, dass eine Erklärung an das Verständnis des Gegenübers angepasst wird. Der Gesprächspartner stellt vertiefende Fragen oder kann Unverständnis äußern, das anschließend aufgelöst wird. Im Fall von künstlicher Intelligenz ist das aufgrund mangelnder Interaktionsfähigkeit mit Einschränkungen verbunden“, so Rohlfing weiter. Um das zu ändern, arbeiten Linguisten, Psychologen, Medienforscher, Soziologen, Ökonomen und Informatiker in einem interdisziplinären Team eng zusammen. Die Experten untersuchen Computermodelle und komplexe KI-Systeme sowie Rollen des kommunikativen Handelns.

    Erklären als soziale Praktik

    Die Paderborner und Bielefelder Wissenschaftler haben einen konzeptionellen Rahmen für das Design von erklärbaren KI-Systemen entwickelt. Rohlfing: „Mit unserem Ansatz können KI-Systeme ausgewählte Fragen so beantworten, dass der Prozess interaktiv gestaltet werden kann. Auf diese Weise wird eine Erklärung auf den Gesprächspartner zugeschnitten und soziale Aspekte in die Entscheidungsfindung miteinbezogen.“ Das Forscherteam versteht Erklärungen dabei als Abfolge von Handlungen, die von den Parteien im Sinne einer sozialen Praktik zusammengebracht werden.

    Konkret soll das durch das sogenannte Scaffolding und Monitoring gesteuert werden. Die Konzepte stammen aus dem Bereich der Entwicklungsforschung: „Vereinfacht ausgedrückt beschreibt Scaffolding – aus dem Englischen für ‚Gerüst‘ – eine Methode, bei der Lernprozesse durch Denkanstöße und Hilfestellungen unterstützt und in Teilschritte zerlegt werden. Beim Monitoring geht es um das Beobachten und Einschätzen der Reaktionen des Gegenübers“, so Rohlfing. Ziel der Wissenschaftler ist es, diese Prinzipien auf KI-Systeme anzuwenden.

    Neue Assistenzformen

    Der Ansatz soll die aktuelle Forschung erweitern und neue Antworten auf gesellschaftliche Herausforderungen im Zusammenhang mit künstlicher Intelligenz geben. Die zugrundeliegende Annahme ist, dass es nur dann gelingen kann, aus einer Erklärung Wissen und weiteres Handeln abzuleiten, wenn der Gesprächspartner in den Erklärprozess miteinbezogen wird. Im Kern geht es dabei um die Teilnahme der Menschen an soziotechnischen Systemen. „Unser Ziel ist es, neue Formen von Kommunikation mit wirklich erklärbaren und verstehbaren KI-Systemen zu schaffen und somit neue Assistenzformen zu ermöglichen“, fasst Rohlfing zusammen.

    Zum Paper: https://ieeexplore.ieee.org/document/9292993


    Contact for scientific information:

    Prof. Dr. Katharina Rohlfing (PB), Fakultät für Kulturwissenschaften, Fon: 05251-60 5717, E-Mail: katharina.rohlfing@upb.de // Prof. Dr. Philipp Cimiano (BI), Technische Fakultät, Fon: 0521-106 12249, E-Mail: cimiano@cit-ec.uni-bielefeld.de


    Original publication:

    https://ieeexplore.ieee.org/document/9292993


    Images

    Die Mensch-Maschine-Interaktion ist komplex. Um computerbasierte Entscheidungen nachvollziehen zu können, bedarf es Erklärungen.
    Die Mensch-Maschine-Interaktion ist komplex. Um computerbasierte Entscheidungen nachvollziehen zu kö ...

    Universität Paderborn


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Cultural sciences, Information technology, Language / literature, Media and communication sciences, Social studies
    transregional, national
    Research projects, Scientific Publications
    German


     

    Die Mensch-Maschine-Interaktion ist komplex. Um computerbasierte Entscheidungen nachvollziehen zu können, bedarf es Erklärungen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).