idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/04/2021 11:08

Schweres Wasser lässt biologische Uhren langsamer ticken - Wie sich Zeit für Zellen aufhalten lässt

Susann Huster Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

    Wissenschaftlern der Universität Leipzig ist es in Zusammenarbeit mit Kollegen aus Deutschland und England gelungen, zelluläre Prozesse reversibel zu verlangsamen. Die Biophysiker um Prof. Dr. Josef Alfons Käs und Dr. Jörg Schnauß konnten in Experimenten erstmals zeigen, dass sich Zellen in schwerem Wasser bei gleicher Temperatur wie in Zeitlupe verhalten können. Solche Möglichkeiten gab es aus physikalischer Sicht bisher nur im Rahmen der Relativitätstheorie. Ihre Forschungsergebnisse haben sie soeben in dem renommierten Fachjournal „Advanced Materials“ veröffentlicht.

    Zellen sind nicht nur unsere biologischen Bausteine, sondern auch sehr dynamische, aktive Systeme. Der Forschergruppe um Prof. Dr. Käs ist es gelungen, diese Dynamiken mit schwerem Wasser deutlich zu verringern, ohne dabei die Zellen zu beschädigen.
    „Schweres Wasser kennen viele allgemeinhin eher noch als wichtiges technisches Mittel aus Atomkraftwerken. Wir haben hier einen anderen Weg beschritten und konnten zeigen, dass sich die Zeit für Zellen beziehungsweise der Ablauf ihrer Dynamiken in Umgebungen mit schwerem Wasser deutlich verlangsamen lässt“, sagt Käs, der sich der Erforschung der physikalischen Eigenschaften von Zellen und Gewebe verschrieben hat. Die Forschungen hätten auf verschiedenen biologischen Ebenen gezeigt, dass die Bewegung von Zellen und ihre Dynamik nur noch in Zeitlupe ablaufen. „Das interessante ist, dass zelluläre Dynamiken bei gleicher Temperatur verlangsamt werden können. Solche Möglichkeiten bietet im physikalischen Kontext bisher nur die Relativitätstheorie“ erklärt Käs. Die Resultate bildeten die Grundlage für ein Verfahren, um Zellen und Organe möglicherweise länger vor Degeneration schützen zu können.

    Die Forscher bestätigten diesen Effekt mit einer Vielzahl komplementärer Methoden und führten die Beobachtungen auf eine erhöhte Interaktion zwischen den Strukturproteinen zurück. „Schweres Wasser bildet ebenfalls Wasserstoffbrückenbindungen aus, welche jedoch stärker sind als in normalen wässrigen Umgebungen. Hierdurch scheinen Strukturproteine wie Aktin stärker untereinander zu interagieren und sich immer wieder kurzzeitig zu verkleben. Spektakulär ist hierbei, dass die Effekte reversibel sind und Zellen wieder ihre nativen Eigenschaften zeigen, sobald sie in ein normales wässriges Medium transferiert werden“, sagt Dr. Jörg Schnauß. „Noch erstaunlicher ist, dass sich die Veränderungen wie bei einem passiven Material verhalten. Zellen sind jedoch höchst aktiv und fernab vom thermodynamischen Gleichgewicht. Verhalten sie sich wie ein passives Material, sind sie sonst eigentlich tot“, ergänzt Käs.

    Wie die Forscher zeigen konnten, ist dies jedoch in ihren Experimenten nicht der Fall. Sie hoffen nun, die gewonnenen Erkenntnisse nutzen zu können, um Zellen oder sogar Gewebe länger vital halten zu können. Sollte sich dieser Ansatz bestätigen, könnte schweres Wasser für längere Aufbewahrungszeiten, zum Beispiel während der Transplantation von Organen, genutzt werden.

    Originaltitel der Veröffentlichung in Advanced Materials:
    "Cells in Slow Motion: Apparent Undercooling Increases Glassy Behavior at Physiological Temperatures",
    DOI: doi.org/10.1002/adma.202101840


    Contact for scientific information:

    Prof. Dr. Josef A. Käs
    Peter-Debye-Institut für Physik der weichen Materie der Universität Leipzig
    Telefon: +49 341 97-32470
    E-Mail: jkaes@physik.uni-leipzig.de
    Web: http://www.uni-leipzig.de/~physik/exp1.html


    Dr. Jörg Schnauß
    Peter-Debye-Institut für Physik der weichen Materie der Universität Leipzig
    Telefon: +49 34197-32753
    E-Mail: joerg.schnauss@uni-leipzig.de


    More information:

    https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202101840


    Images

    Fluoreszenzaufnahmen zeigten, dass sich Zellen nicht sichtbar morphologisch veränderten. Die Verlangsamung der Dynamiken beruht einzig auf der Anwesenheit von schwerem Wasser.
    Fluoreszenzaufnahmen zeigten, dass sich Zellen nicht sichtbar morphologisch veränderten. Die Verlang ...
    Foto: Universität Leipzig


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Fluoreszenzaufnahmen zeigten, dass sich Zellen nicht sichtbar morphologisch veränderten. Die Verlangsamung der Dynamiken beruht einzig auf der Anwesenheit von schwerem Wasser.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).