idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/13/2021 11:14

Mechanische Reize beeinflussen das Organwachstum - komplexe Interaktionen von Zellen und Gewebe

Dr. Andreas Battenberg Corporate Communications Center
Technische Universität München

    Beim natürlichen Wachstum, aber auch bei der Tumorentstehung spielen in menschlichen Organen wie Niere, Lunge oder Brustdrüse neben chemischen auch mechanische Einflüsse eine wichtige Rolle. An Organoiden, im Labor gezüchten, dreidimensionalen Modellsystemen solcher Organe, konnte ein Forschungsteam der Technischen Universität München (TUM) dies nun im Detail zeigen.

    Organoide sind dreidimensionale Modellsysteme für unterschiedliche Organe des Menschen, die im Labor gezüchtet werden und ähnliche Eigenschaften wie das echte Körpergewebe aufweisen. Sie bieten der Wissenschaft neue Möglichkeiten, um Wachstumsprozesse von Organen im Labor nachzubilden und zu untersuchen. Mit den bisher verwendeten vereinfachten zweidimensionalen Modellsystemen waren diese Prozesse bisher nicht beobachtbar.

    Indem sie an Brustdrüsenorganoiden die komplexen Interaktionen der Zellen mit dem umgebenden Gewebe analysierten, konnten Wissenschaftlerinnen und Wissenschaftler der TU München, des Helmholtz Zentrums München und der Ruhr-Universität Bochum zeigen, dass das Wachstum des Drüsengewebes in der menschlichen Brust explizit von den mechanischen Eigenschaften des umgebenden Kollagennetzwerks beeinflusst wird.

    Integrierter dynamischer Entwicklungsprozess

    Die vom Team gezüchteten Organoide bilden verzweigte Drüsengänge aus, welche in ihrer Struktur und Organisation der menschlichen Brustdrüse sehr nahekommen. Während des Wachstums dringen die einzelnen Organoidzweige in die umgebende Kollagenmatrix ein.

    „Ausgehend von einer einzigen Stammzelle bauen diese Organoide in nur 14 Tagen eine komplexe, verzweigte, dreidimensionale Struktur auf, die aus mehreren tausend Zellen besteht. Das ist absolut faszinierend", sagt Andreas Bausch, Professor für Zellbiophysik an der TU München und Leiter der Forschungsgruppe.

    Durch zeitlich aufgelöste Mikroskopie der wachsenden Strukturen über mehrere Tage gelang es dem Forschungsteam, den dynamischen Prozess der Entwicklung im Detail nachzuverfolgen. Dabei fanden sie heraus, dass das Organoidwachstum maßgeblich durch eine kollektive Bewegung der Zellen diktiert wird.

    Indem sie sich in Wachstumsrichtung ausdehnen und wieder zusammenziehen, erzeugen die Zellen dabei Kräfte die so stark sind, dass sie die umgebende Kollagenmatrix deformieren und dem Organoid ermöglichen, sein weiteres Wachstum selbstorganisiert auszurichten.

    Stabiler Kollagenkäfig

    „Möglich ist dies durch die mechanische Plastizität des Kollagens“, sagt Benedikt Buchmann, Erstautor der Studie. „Wenn die einzelnen Zellen sich kollektiv hin und her bewegen, baut sich eine so starke Spannung auf, dass die Zellen eines Zweigs die Kollagenmatrix verformen können.“

    Der gesamte Prozess führt zur Bildung eines mechanisch stabilen Kollagenkäfigs, der schließlich den wachsenden Zweig umgibt. Der Kollagenkäfig steuert die weitere Spannungserzeugung, das Heranwachsen der Äste und die plastische Verformung der Matrix.

    Aufbauend auf diesen Erkenntnissen ist es nun möglich, mit diesem Modellsystem auch komplexere Prozesse, wie zum Beispiel erste Schritte der Metastasierung oder Wechselwirkungen mit anderen Zelltypen zu untersuchen. Ob dieser Selbstorganisations-Mechanismus auch in anderen Organen vorkommt, wird gerade aktuell intensiv erforscht.

    ###

    Gefördert wurde die Forschungsarbeit durch das European Research Council (ERC) im Rahmen des ERC Synergy Grant „PoInt“ und durch den SFB 1032 der Deutschen Forschungsgemeinschaft (DFG). Partner des Projekts waren das Helmholtz Zentrum München und das St. Josef-Hospital der Ruhr-Universität Bochum.


    Contact for scientific information:

    Prof. Dr. Andreas Bausch
    Lehrstuhl für Biophysik (E27) und
    TUM Center for Protein Assemblies (CPA)
    Technische Universität München
    Ernst-Otto-Fischer-Straße 8, 85748 Garching
    Tel.: +49 89 289 12480 – E-Mail: andreas.bausch@tum.de


    Original publication:

    Benedikt Buchmann, Lisa K. Engelbrecht, Pablo Fernandez, Franz P. Hutterer, Marion K. Raich, Christina H. Scheel, Andreas R. Bausch
    Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
    Nature Communications, May 12, 2021 – DOI: 10.1038/s41467-021-22988-2


    More information:

    https://www.nature.com/articles/s41467-021-22988-2 Originalpublikation
    https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36795/ Presseinformation auf der TUM-Website
    https://www.bauschlab.org Website der Arbeitsgruppe


    Images

    Erstautor Benedikt Buchmann am Mikroskop. Durch zeitaufgelöste Beobachtung der Zellen konnte das Forschungsteam die Wechselwirkungen zwischen den Organoid-Zellen und dem umgebenden Kollagen im Detail verfolgen.
    Erstautor Benedikt Buchmann am Mikroskop. Durch zeitaufgelöste Beobachtung der Zellen konnte das For ...
    Max Kratzer / TUM

    Die vom Forschungsteam im Labor gezüchteten Organoide bilden verzweigte Drüsengänge aus, welche in ihrer Struktur und Organisation der menschlichen Brustdrüse sehr nahekommen.
    Die vom Forschungsteam im Labor gezüchteten Organoide bilden verzweigte Drüsengänge aus, welche in i ...
    Benedikt Buchmann / TUM


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Chemistry, Medicine, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Erstautor Benedikt Buchmann am Mikroskop. Durch zeitaufgelöste Beobachtung der Zellen konnte das Forschungsteam die Wechselwirkungen zwischen den Organoid-Zellen und dem umgebenden Kollagen im Detail verfolgen.


    For download

    x

    Die vom Forschungsteam im Labor gezüchteten Organoide bilden verzweigte Drüsengänge aus, welche in ihrer Struktur und Organisation der menschlichen Brustdrüse sehr nahekommen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).