idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/07/2021 11:06

Messengers from gut to brain: T cells traveling from the gut and skin to the central nervous system

Lisa Pietrzyk Corporate Communications Center
Technische Universität München

    Scientists have long been aware of a link between the gut microbiome and the central nervous system (CNS). Until now, however, the immune cells that move from the gut into the CNS and thus the brain had not been identified. A team of researchers in Munich has now succeeded in using violet light to make these migrating T cells visible for the first time. This opens up avenues for developing new treatment options for diseases such as multiple sclerosis (MS) and cancer.

    The link between the gut microbiome and the CNS, known as the gut/brain axis (GBA), is believed to be responsible for many things: a person’s body weight, autoimmune diseases, depression, mental illnesses and Alzheimer’s disease. Researchers at the Technical University of Munich (TUM) and LMU University Hospital Munich have now succeeded in making this connection visible for the first time. This is cause for hope – for those suffering from MS, for example. It may offer ways to adapt treatments, and T cells could perhaps be modified before reaching the brain.

    Immune cell migration in MS

    The immune system is affected by environmental factors – also in the central nervous system in case of MS patients. This autoimmune disease is subject to repeated flare-ups, experienced by patients as the improvement or worsening of their condition. T cells collect information and, in MS patients, carry it to the central nervous system (in the brain or spinal cord) where an immune response is triggered. Until now, however, it was long uncertain how and from where the T cells were traveling to the CNS.

    Using violet light to track marked T cells

    The team working with Thomas Korn, a professor of experimental neuroimmunology at TUM, has developed a method for marking immune cells in mice using photoconvertible proteins. The T cells can then be made visible with violet light. The researchers successfully tested this method with the mouse model in lymph nodes, both in the gut and the skin. They were able to track the movement of the T cells from those locations into the central nervous systems.

    Characteristics of T cells reveal their origin

    T cells from the skin migrated into the gray and white matter of the CNS, while almost all T cells from the gut ended up in the white matter. For T cells in the brain, it was still possible to determine their origin. “What makes these insights so important is that they demonstrate for the first time that environmental influences impact the T cells in lymph nodes in the gut and the skin, which then carry this information into the distant organs,” says Prof. Thomas Korn. “The characteristics of the T cells are sufficiently stable for us to determine whether immune responses are influenced by skin or gut T cells,” adds LMU researcher Dr. Eduardo Beltrán, who performed the bioinformatic analyses in this study.

    Starting point for future treatments

    An important insight for MS patients: “If gut or skin cells were known to be the cause, the T cells could be treated at the source of the disease and predictions could be made on the progress of the chronic inflammation and autoimmune condition,” says first author Michael Hiltensperger. The results of the study could also mean a breakthrough for research on other autoimmune diseases or cancer.


    Contact for scientific information:

    Univ.-Prof. Dr. Thomas Korn
    Klinikum rechts der Isar
    of the Technical University of Munich
    Director of Experimental Neuroimmunology
    phone: +49 (0) 89-4140-5617
    phone. +49 (0) 89-4140-4606 (Office)
    e-mail: thomas.korn@tum.de


    Original publication:

    Hiltensperger, M., Beltrán, E., Kant, R. et al.
    Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nature Immunology 22, 880–892 (2021).
    DOI: 10.1038/s41590-021-00948-8


    More information:

    https://www.tum.de/en/about-tum/news/press-releases/details/36901
    https://mediatum.ub.tum.de/1622134


    Images

    Thomas Korn is a professor for Experimental Neuroimmunology at TUM.
    Thomas Korn is a professor for Experimental Neuroimmunology at TUM.
    Magdalena Jooss
    Magdalena Jooss / TUM


    Criteria of this press release:
    Journalists
    Medicine
    transregional, national
    Research results
    English


     

    Thomas Korn is a professor for Experimental Neuroimmunology at TUM.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).