idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/05/2021 11:00

Researchers detect a diffusion barrier inside fly brain

Dr. Christina Hoppenbrock Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    A team of researchers led by Nicole Pogodalla and Prof. Dr. Christian Klämbt from the Institute of Neuro- and Behavioral Biology at University of Münster now demonstrated for the first time an internal diffusion barrier in the brain of fruit flies - in addition to the already known blood-brain barrier.

    The neurons, located in the brain are interconnected in a complex pattern and establish special communication points, the synapses. All neurons require a constant environment in order to function reliably. To ensure this, the brain is surrounded by the so-called blood-brain barrier. It ensures, for example, that the nutrient balance always remains the same and that harmful influences do not reach the neurons. This applies to all animals including humans. For insects, a team led by Nicole Pogodalla and Prof. Dr. Christian Klämbt from the Institute of Neuro- and Behavioral Biology at the University of Münster has now shown that there is also a second barrier in the brain. Here glial cells, too, ensure a spatial separation of different functional compartments, which is essential for reliable functioning of the nervous system. The work was published in the prestigious online journal Nature Communications.

    The research team studied the insect brain using larvae of the fruit fly (Drosophila melanogaster) as an example and focused on the role of glial cells. Early in development these cells help to establish the correct neuronal network and later glial cells play important roles in controlling the transmission of signals between neurons. In all invertebrates, as well as in primitive vertebrates, glial cells also define the outer boundary of the nervous system – the blood-brain barrier.

    Deep in the fly brain, all synapses are located in a special region called the neuropil. The neuropil is separated from the zone containing the cell bodies of the neurons by a small set of surrounding glial cells, that were in the focus of Nicole Pogodalla. She developed a new experimental approach - dye injections into living larval brains - and combined this with cell type specific ablation experiments to show that these glial cells actually form a diffusion barrier, i. e. regulate the distribution of molecules.

    Since all other cellular barriers in the body are formed by polarized cells that have an "up" and a "down," the research team next examined glial cell polarity. Using advanced confocal image analysis as well as electron microscopy work in combination with state-of-the-art molecular genetics, the researchers uncovered that the ensheathing glial cells are indeed polarized. They showed that this polarization is functionally important, as defects in polarity lead to both an altered cell shape and cause a significant behavioral phenotype in fly larvae: Movement of larvae with defective or absent glial cells is impaired, and crawling speed is reduced.

    In the current paper, the research team also describes the importance of extracellular matrix - the tissue lying between cells -, membrane lipids and membrane proteins, as well as the function of the cytoskeleton in the formation of the barrier-forming glial cells. The study includes extensive electron microscopy data obtained in a collaboration with Dr. Albert Cardona at the HHMI Janelia Research Campus in Ashburn, VA 20147, USA.

    The German Research Foundation provided financial support for the work as part of Collaborative Research Center (SFB) 1348.


    Contact for scientific information:

    Nicole Pogodalla
    University of Münster
    Institute of Neuro- and Behavioral Biology
    Email: pogodall@uni-muenster.de


    Original publication:

    Nicole Pogodalla, Holger Kranenburg, Simone Rey, Silke Rodrigues, Albert Cardona & Christian Klämbt (2021): Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nature Communications, DOI:10.1038/s41467-021-26462-x


    Images

    Optical cross-section through a fly brain. Green: distribution of the extracellular matrix protein "Trol", which is formed by all enveloping glial cells. The subdivision of the brain into different reaction spaces becomes clear.
    Optical cross-section through a fly brain. Green: distribution of the extracellular matrix protein " ...

    WWU - Nicole Pogodalla und Christian Klämbt


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results
    English


     

    Optical cross-section through a fly brain. Green: distribution of the extracellular matrix protein "Trol", which is formed by all enveloping glial cells. The subdivision of the brain into different reaction spaces becomes clear.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).