Eine neue Entdeckung von Physikern der Martin-Luther-Universität Halle-Wittenberg (MLU) könnte bestimmte Bauteile in Computern und Smartphones überflüssig machen. Dem Team ist es in einem gängigen magnetischen Material gelungen, Frequenzen ohne zusätzliche Bauteile direkt in höhere Bereiche umzuwandeln. Der Prozess der Frequenzvervielfachung ist von grundlegender Bedeutung in der modernen Elektronik. Über seine Forschung berichtet das Team in der aktuellen Ausgabe von "Science".
Digitale Technologien und Geräte sind bereits heute für etwa zehn Prozent des weltweiten Stromverbrauchs verantwortlich, Tendenz stark steigend. "Es ist daher notwendig, effizientere Bauelemente für die Informationsverarbeitung zu entwickeln", sagt der Physiker Prof. Dr. Georg Woltersdorf von der MLU.
Typischerweise werden die für den Betrieb der Geräte notwendigen Signale im Gigahertz-Frequenzbereich durch nicht-lineare elektronische Schaltungen erzeugt. Das Forscherteam der MLU hat nun einen Weg gefunden, wie das auch ohne elektronische Bauelemente innerhalb eines magnetischen Materials möglich ist. Die Magnetisierung wird dabei durch eine Quelle im niederfrequenten Megahertz-Bereich angeregt. Diese Quelle generiert - durch den neu entdeckten Effekt - gezielt mehrere Frequenzkomponenten, die jeweils einem Vielfachen der Anregungsfrequenz entsprechen. Diese umfassen einen Bereich von sechs Oktaven und erreichen bis zu mehrere Gigahertz. "Das ist in etwa so, als ob man bei einem Klavier den tiefsten Ton auf der Tastatur anschlägt und dabei zusätzlich auch die entsprechenden harmonischen Töne der höheren Oktaven erklingen", so Woltersdorf weiter.
Erklärt wird der überraschende Effekt der Frequenzmultiplikation durch synchronisierte Schaltvorgänge der dynamischen Magnetisierung auf der Mikrometerskala. "Verschiedene Bereiche schalten dabei nicht gleichzeitig, sondern werden durch benachbarte Bereiche angestoßen, ähnlich wie beim Domino ein Stein den anderen umstößt", erklärt Erst-Autor Chris Körner vom Institut für Physik der MLU.
Die Entdeckung könnte dabei helfen, digitale Technologien in Zukunft energieeffizienter zu machen. Sie ist auch für neue Anwendungen von Interesse: Aktuelle Mikroelektronik nutzt die Ladung der Elektronen als Informationsträger. Ein großer Nachteil dieser Methode ist, dass das Verschieben von elektrischer Ladung Wärme freisetzt und viel Energie benötigt. Ein vielversprechender Ausweg könnte die Spin-Elektronik sein. Diese nutzt zusätzlich zur Ladung des Elektrons auch dessen magnetisches Moment, den sogenannten Spin, und erlaubt prinzipiell eine deutliche Verbesserung der Energieeffizienz. Der neu entdeckte Effekt könnte platzsparende und effiziente Frequenzquellen für die Spin-Elektronik im Gigahertz-Bereich ermöglichen.
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Europäischen Forschungsrat gefördert.
Studie: Körner C., Dreyer R. Wagener M., Liebing N., Bauer H.G. & Woltersdorf G. Frequency multiplication by collective nanoscale spin wave dynamics. Science (2022). doi: 10.1126/science.abm6044
https://doi.org/10.1126/science.abm6044
Georg Woltersdorf (links) und Chris Körner im Labor
Uni Halle / Markus Scholz
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars
Electrical engineering, Materials sciences, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).