idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/27/2022 11:12

Gleiches Symptom – andere Ursache?

Dr. Katharina Baumeister Corporate Communications Center
Technische Universität München

    Maschinelles Lernen spielt eine immer wichtigere Rolle in der biomedizinischen Forschung. Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) entwickelten nun eine neue Methode, um Subtypen von Krankheiten aus molekularen Daten zu extrahieren. Diese kann die Erforschung großer Patientengruppen in Zukunft unterstützen.

    Anhand der Symptome definieren und diagnostizieren Ärztinnen und Ärzte heutzutage die meisten Krankheiten. Das muss aber nicht bedeuten, dass Patientinnen und Patienten mit ähnlichen Symptomen auch die gleiche Krankheitsursache oder gleiche molekulare Veränderungen aufweisen. In der Biomedizin spricht man dabei oft von molekularen Mechanismen einer Krankheit, also wie sich die Regulation von Genen, Proteinen oder Stoffwechselwegen bei dem Ausbruch einer Krankheit ändern. Das Ziel von stratifizierter Medizin ist es, Erkrankte auf molekularer Ebene in unterschiedliche Subtypen einzuteilen, um ihnen eine gezieltere Behandlung zukommen zu lassen.

    Um Krankheits-Subtypen aus großen Patientendaten zu identifizieren, können neue Algorithmen aus dem Bereich des maschinellen Lernens helfen. Diese haben das Ziel, selbstständig Muster und Zusammenhänge von umfangreichen klinischen Messungen zu erkennen. Die Nachwuchsforschungsgruppe LipiTUM um Gruppenleiter Dr. Josch Konstantin Pauling vom Lehrstuhl für Experimentelle Bioinformatik hat einen solchen Algorithmus entwickelt.

    Komplexe Analysen via automatisierter Web-Anwendung

    Ihre Methode vereint die Resultate von bestehenden Algorithmen, um genauere und robustere Vorhersagen zu klinischen Subtypen machen zu können. Dadurch werden die Vorzüge und Eigenschaften mehrerer Algorithmen vereint und die aufwändige Anpassung entfällt. “Das erleichtert die Anwendung in der klinischen Forschung deutlich”, berichtet Dr. Pauling. „Aus diesem Grund haben wir auch eine Web-basierte Anwendung entwickelt, auf der die Analyse molekularer Daten ohne bioinformatisches Vorwissen online vorgenommen werden kann.”

    Auf der Webseite (https://exbio.wzw.tum.de/mosbi/) können Forschende ihre eigenen Forschungsdaten automatisiert analysieren lassen und die Ergebnisse für die Interpretation ihrer Studien nutzen. „Auch sehr wichtig war uns eine entsprechende Visualisierung der Resultate. Bisherige Ansätze waren nicht in der Lage, Zusammenhänge zwischen Patientengruppen, klinischen Faktoren und molekularen Signaturen intuitiv zu visualisieren. Das ändert sich mit der netzwerkbasierten Darstellung mit unserem Web-Tool MoSBi”, erklärt Tim Rose, Wissenschaftler an der TUM School of Life Sciences. MoSBi ist der Name der neuen Methode und steht für „Molecular Signatures using Biclustering”. „Biclustering” ist die Technologie, auf die der Algorithmus aufbaut.

    Anwendung für klinisch relevante Fragestellungen

    Die Forschenden haben mit diesem Tool nun beispielsweise die die Möglichkeit, Daten von Krebsstudien und Simulationen für unterschiedliche Szenarien darzustellen. In einer groß angelegten klinischen Studie, konnten sie das Potential der Methode bereits unter Beweis stellen. In einer Kooperation mit Forschenden des Max-Planck-Instituts in Dresden, der Technischen Universität Dresden, und dem Uniklinikum Kiel untersuchten sie die Veränderung des Lipid (Fett)-Stoffwechsels in der Leber von Patientinnen und Patienten mit Nichtalkoholischer Fettlebererkrankung (NAFLD).

    Diese weit verbreitete Krankheit steht im Zusammenhang mit Übergewicht und Diabetes. Sie entwickelt sich von der nichtalkoholischen Fettleber (NAFL), bei der sich Fette in Leberzellen einlagern, über die nichtalkoholische Steatohepatitis (NASH), der zusätzlichen Entzündung der Leber, bis hin zu einer Leberzirrhose und Tumorbildung. Eine Behandlung, bis auf die Umstellung der Ernährung, gibt es bisher nicht. Da die Krankheit durch die Ansammlung von unterschiedlichen Fetten in der Leber charakterisiert und auch diagnostiziert wird, ist es wichtig deren molekulare Zusammensetzung zu verstehen.

    Biomarker für Leberkrankheit

    Mithilfe der MoSBi Methode konnten sie zeigen, wie heterogen die Lebern von Kranken im NAFL Stadium auf molekularer Ebene sind. „Die Leberzellen vieler NAFL-Patientinnen und Patienten waren molekular betrachtet bereits fast identisch zu NASH-Patienten, wohingegen andere noch weitgehende Ähnlichkeiten zu gesunden Patienten zeigten. Unsere Vorhersagen konnten wir auch anhand von klinischen Informationen bestätigen”, sagt Dr. Pauling. „Daraufhin konnten wir auch zwei potentielle Lipid-Biomarker für den Krankheitsfortschritt identifizieren.” Das ist wichtig, damit die Krankheit und deren Entwicklung möglichst früh erkannt und gezielt behandelt werden kann.

    Die Forschungsgruppe arbeitet bereits an weiteren Anwendungen, um auch andere Krankheiten mit ihrer Methode besser zu verstehen. „In Zukunft werden Algorithmen eine noch größere Rolle in der biomedizinischen Forschung spielen als jetzt bereits. Diese können es deutlich erleichtern, komplexe Mechanismen aufzudecken und Ansätze für gezieltere Behandlungen zu finden”, sagt Dr. Pauling.


    Contact for scientific information:

    Dr. Josch Konstantin Pauling
    TUM Junior Fellow
    Technische Universität München
    TUM School of Life Sciences
    josch.pauling@tum.de
    www.lipitum.de


    Original publication:

    Tim Daniel Rose et al.: MoSBi: Automated signature mining for molecular stratification and subtyping”. Proceedings of the National Academy of Sciences (2022). DOI: 10.1073/pnas.2118210119

    Olga Vvedenskaya et al.: Nonalcoholic fatty liver disease stratification by liver lipidomics. Journal of Lipid Research (2021). DOI: 10.1016/j.jlr.2021.100104


    More information:

    http://doi.org/10.1073/pnas.2118210119
    http://doi.org/10.1016/j.jlr.2021.100104
    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37407
    https://mediatum.ub.tum.de/1659820
    https://www.professoren.tum.de/tum-junior-fellows/p/pauling-josch-konstantin
    http://www.lipitum.de/


    Images

    Der Leiter der Forschungsgruppe LipiTUM Dr. Josch Konstantin Pauling (links) und Doktorand Nikolai Köhler (rechts) interpretieren die krankheitsbedingten Veränderungen im Fettstoffwechsel anhand eines neu entwickelten Netzwerkes.
    Der Leiter der Forschungsgruppe LipiTUM Dr. Josch Konstantin Pauling (links) und Doktorand Nikolai K ...
    LipiTUM
    Verwendung frei für die Berichterstattung über die TUM bei Nennung des Copyrights


    Attachment
    attachment icon Stratifizierung von Patientenkohorten kann zu gezielteren Behandlungen führen. Erstellt mit BioRender.com

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Information technology, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Der Leiter der Forschungsgruppe LipiTUM Dr. Josch Konstantin Pauling (links) und Doktorand Nikolai Köhler (rechts) interpretieren die krankheitsbedingten Veränderungen im Fettstoffwechsel anhand eines neu entwickelten Netzwerkes.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).