idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project

idw-News App:


Google Play Store

Share on: 
07/06/2022 11:11

The goal is quantum technology for everyday use

Stephan Laudien Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    New Junior research group “Integrated Quantum Systems” of Friedrich Schiller University Jena receives 3.3 million euros in funding from Federal Ministry of Education and Research

    The new Jena University junior research group “Integrated Quantum Systems” will receive funding worth 3.3 million euros over five years from the German Federal Ministry of Education and Research. The funding confirmation arrived this week and the group will start its work immediately. The five scientists are taking on the task of testing and proving the suitability of modern quantum technologies for everyday use.

    “We’ll break new ground in order to transform laboratory set-ups into everyday technology,” says Dr Tobias Vogl, outlining the aim of the working group. The 30-year-old scientist from the Institute of Applied Physics at the University of Jena, Germany heads the new junior research group. “We consider the combination of solid-state photonics and quantum materials to be particularly promising,” he adds.

    The new group will focus its research in particular on the properties and possible applications of boron nitride. This boron-nitrogen compound is a non-conductor that can form fluorescent defects that emit individual photons when irradiated with a laser. The crystals of this material used are typically between five and 20 nanometres thick.

    Compact sensors with greater precision are one of the goals

    There are many potential applications for the new quantum technologies. Tobias Vogl mentions sensors, for example, that will be much more compact than conventional ones and at the same time significantly more precise. Unlike comparable quantum technologies, the new systems will not require complex cooling systems, but will function at room temperature. These new sensors could be used, for example, in the contactless measurement of electrical current: “The advantage of this measurement method is that there are no line losses,” says Vogl. This would be an immense benefit, especially in relation to decentralised energy generation. Another innovation would be transportable compact MRI devices that could be used in emergency medicine, for example.

    The junior research group “Integrated Quantum Systems” is based on the “ATOMIQS” project, which stands for Atomically Thin Materials for Integrated Quantum Systems. In this project, new types of quantum light sources are investigated in atomically thin 2D materials and combined with fibre optic cables. Research will be conducted into an efficient interface between the individual quantum assemblies. “We’re also integrating the 2D materials into optical systems, which makes it possible to tailor the photophysical properties of quantum emitters,” says Vogl. These optical systems will first be simulated and optimised in model calculations, and then manufactured using modern nanofabrication technologies.

    Tobias Vogl’s junior research group is international. One of the scientists is from Australia and another is from Iran. Vogl is also the coordinator of a second third-party funded project. The aim of this project is to test quantum emitters in space. In cooperation with international partners, a satellite is being configured for this purpose, and is to be launched into space in 2024. Here, too, joint research is being carried out across borders: the researchers come from the USA, China, India, Israel, Thailand and Iran.

    Contact for scientific information:

    Dr Tobias Vogl
    Institute of Applied Physics of Friedrich Schiller University Jena
    Albert-Einstein-Straße 15, 07745 Jena, Germany
    Telephone: +49 (0)3641 / 947992


    Dr. Tobias Vogl aligns an optical chip with a quantum light source at the University of Jena.
    Dr. Tobias Vogl aligns an optical chip with a quantum light source at the University of Jena.
    Image: Jens Meyer
    University of Jena

    Criteria of this press release:
    Physics / astronomy
    transregional, national
    Research projects


    Dr. Tobias Vogl aligns an optical chip with a quantum light source at the University of Jena.

    For download



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).