idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/25/2022 17:00

Vocal Communication Originated over 400 Million Years Ago

Kurt Bodenmüller Kommunikation
Universität Zürich

    Acoustic communication is not only widespread in land vertebrates like birds and mammals, but also in reptiles, amphibians, and fishes. Many of them are usually considered mute, but in fact show broad and complex acoustic repertoires. According to researchers at University of Zurich, the evolutionary origin of vocal communication dates back more than 400 million years.

    The use of vocalizations as a resource for communication is common among several groups of vertebrates: singing birds, croacking frogs, or barking dogs are some well-known examples. These vocalizations play a fundamental role in parental care, mate attraction and various other behaviors. Despite its importance, little is known about when and at what stage in the evolutionary history of vertebrates this behavior first appeared. Comparative analyses can provide insights into the evolutionary origin of acoustic communication, but they are often plagued by missing information from key groups that have not been broadly studied.

    Acoustic abilities are widespread in land vertebrates

    An international research team led by the University of Zurich (UZH) has therefore focused on species that have never been accessed before. Their study includes evidence for 53 species of four major clades of land vertebrates – turtles, tuataras, caecilians and lungfishes – in the form of vocal recordings and contextual behavioral information accompanying sound production. “This, along with a broad literature-based dataset including 1800 different species covering the entire spectrum shows that vocal communication is not only widespread in land vertebrates, but also evidence acoustic abilities in several groups previously considered non-vocal,” says first author Gabriel Jorgewich-Cohen, PhD student at the Paleontological Institute and Museum of UZH. Many turtles, for example, which were thought to be mute are in fact showing broad and complex acoustic repertoires.

    Last common ancestor lived about 407 million years ago

    To investigate the evolutionary origins of acoustic communication in vertebrates, the researchers combined relevant data on the vocalization abilities of species like lizards, snakes, salamanders, amphibians, and dipnoi with phylogenetic trait reconstruction methods. Combined with data of well-known acoustic clades like mammals, birds, and frogs, the researchers were able to map vocal communication in the vertebrate tree of life. “We were able to reconstruct acoustic communication as a shared trait among these animals, which is at least as old as their last common ancestor that lived approximately 407 million years before present,” explains Marcelo Sánchez, who led the study.

    Acoustic communication did not evolve multiple times

    So far, the scientific consensus favored a convergent origin of acoustic communication among vertebrates since the morphology in hearing apparatus and its sensitivity as well as the vocal tract morphology vary considerably among vertebrates. But according to the UZH researchers, the available evidence for this hypothesis lacks relevant data from key species so far considered non-vocal or neglected. “Our results now show that acoustic communication did not evolve multiple times in diverse clades, but has a common and ancient evolutionary origin,” concludes Sánchez.


    Contact for scientific information:

    Gabriel Jorgewich Cohen
    Paleontological Institute and Museum
    University of Zurich
    Phone: +41 76 817 74 02
    E-mail: gabriel.jorgewichcohen@pim.uzh.ch

    Prof. Dr. Marcelo R. Sánchez
    Paleontological Institute and Museum
    University of Zurich
    Phone: +41 44 634 23 42
    E-mail: m.sanchez@pim.uzh.ch


    Original publication:

    Gabriel Jorgewich-Cohen, Simon William Townsend, Linilson Rodrigues Padovese, et al. Common evolutionary origin of acoustic communication in choanate vertebrates. Nature Communications. 25 October 2022. DOI: 10.1038/s41593-022-01177-4


    More information:

    https://www.news.uzh.ch/en/articles/media/2022/Acoustic-Communication.html


    Images

    Tuatara are found only on New Zealand islands and are considered living fossils. They also communicate acoustically.
    Tuatara are found only on New Zealand islands and are considered living fossils. They also communica ...
    Gabriel Jorgewich Cohen
    University of Zurich

    The researchers were even able to detect acoustic communication in lungfish.
    The researchers were even able to detect acoustic communication in lungfish.
    Rafael C.B. Paradero
    Rafael C.B. Paradero


    Criteria of this press release:
    Journalists
    Biology, Cultural sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Tuatara are found only on New Zealand islands and are considered living fossils. They also communicate acoustically.


    For download

    x

    The researchers were even able to detect acoustic communication in lungfish.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).