Bis zu einem gewissen Punkt können sehr hell leuchtende Sterne die Entstehung von Planeten positive beeinflussen, doch danach bewirkt ihre Strahlung eher, dass das Material in den protoplanetarischen Scheiben sich auflöst. Daten des James Webb-Weltraumteleskops liefern neue Einsichten zu den Auswirkungen dieses Effekts im Orionnebel / Veröffentlichung in „Science“
Wissenschaftler*innen der Universität zu Köln haben in einem internationalen Forschungsteam mithilfe des James Webb-Weltraumteleskops (JWST) ein Sternentstehungsgebiet untersucht, den sogenannten Orionnebel, um herauszufinden, wie Planetensysteme wie unser Sonnensystem entstehen. Durch die Beobachtung der protoplanetaren Scheibe d203-506 entdeckten sie, dass massereiche Sterne bei der Entstehung von Planetensystemen, die weniger als eine Million Jahre alt sind, eine Schlüsselrolle spielen. Der Artikel „A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk“ wurde im Fachjournal Science veröffentlicht. Dr. Olivier Berné vom französischen Nationalen Zentrum für wissenschaftliche Forschung (CNRS) in Toulouse hat die Studie geleitet.
Massereiche Sterne sind etwa zehnmal schwerer als die Sonne, und vor allem strahlen sie 100.000-mal heller. Sie setzen in ihrer Umgebung entstehende Planeten einer sehr intensiven UV-Strahlung aus. Abhängig von der Masse des Sterns im Zentrum des Planetensystems kann diese Strahlung entweder zur Entstehung von Planeten beitragen, oder aber sie durch die Zerstreuung ihrer Materie verhindern. So fanden die Wissenschaftler*innen heraus, dass sich ein Planet wie der Jupiter aufgrund der intensiven Strahlung der massereichen Sterne im Planetensystem d203-506 im Orionnebel nicht bilden könnte.
Das Team umfasst Expert*innen aus Bereichen wie der Instrumentierung, Datenreduzierung und Modellierung. Die Daten des JWST wurden mit Daten aus dem Atacama Large Millimeter Array (ALMA) kombiniert, um die physikalischen Bedingungen innerhalb des Gases einzugrenzen. Berechnungen der Rate, bei der die Scheibe an Masse verliert, zeigen, dass sie verdunsten würde, bevor ein Riesenplanet entstehen kann.
„Es ist ein großer Erfolg, dass sich die jahrelangen Anstrengungen des Teams – von der Planung über die anschließende Auswertung der Daten – nun in Form dieser Ergebnisse auszahlen. Sie sind ein bedeutender Fortschritt für das Verständnis der Entstehung von Planetensystemen“, sagt Dr. Yoko Okada vom Institut für Astrophysik der Universität zu Köln.
Die mithilfe des JWST gesammelten Daten über den Orionnebel sind sehr umfangreich und dienen den Wissenschaftler*innen auch weiterhin als Grundlage für verschiedene detaillierte Analysen der Stern- und Planetenentstehung sowie der Entwicklung des interstellaren Mediums.
Dr. Yoko Okada
Institut für Astrophysik
+49 221 470 1334
okada@ph1.uni-koeln.de
https://www.science.org/doi/10.1126/science.adh2861
Orion Nebel
Fuenmayor/PDRs4A
NASA/ESA/CSA/S. Fuenmayor/PDRs4All
Criteria of this press release:
Journalists, Scientists and scholars
Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).