idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/11/2024 09:55

Können Quantencomputer bei der Entwicklung neuer Medikamente helfen?

Theresa Bittermann Öffentlichkeitsarbeit
Universität Wien

    Wissenschafter*innen sagen voraus, dass Quantencomputer in Zukunft Arzneistoffe schneller entdecken können als klassische Computer

    Quantencomputer haben vielversprechende Anwendungsmöglichkeiten. Ein potenzieller Einsatzbereich ist die computergestützte Erforschung und Entwicklung neuer Arzneimittel. Ein Team der Universität Wien, zusammen mit Forscher*innen von Boehringer Ingelheim, BASF, Google, QC Ware sowie der Universität Toronto haben in einem Übersichtsartikel, erschienen in der Fachzeitschrift Nature Physics, die Möglichkeiten dieser Technologie untersucht.

    Ein Team des Instituts für Theoretische Chemie der Universität Wien hat, zusammen mit Forscher*innen von Boehringer Ingelheim und weiteren internationalen Kolleg*innen untersucht, welche Möglichkeiten zukünftige Quantencomputer für den Bereich der Medikamentenentwicklung bieten. "Theoretisch sind Quantencomputer in der Lage, die Elektronenstruktur von beliebigen Molekülen vorherzusagen, ohne dass unkontrollierbare Näherungen angewendet werden müssen", sagt Leticia González, Theoretische Chemikerin an der Universität Wien. "Bei klassischen Computern steigt die Rechenzeit exponentiell mit der Anzahl der Elektronen des zu simulierenden Moleküls. Dadurch wird die Berechnung ab einer bestimmten Größe unmöglich. Mittels Quantencomputer lässt sich diese Barriere überwinden, d.h. es lassen sich in Zukunft Substanzen modellieren, für deren Berechnung klassische Computer Jahrhunderte brauchen würden."

    Hintergrund dazu ist: Eine der zentralen Fragestellungen bei der Entwicklung neuer Medikamente ist die Wechselwirkung des Arzneimittels mit dem Zielmolekül im Körper, welches das Krankheitsgeschehen beeinflusst. Bei den Zielmolekülen, die sogenannten Targets, handelt es sich in der Regel um Enzyme oder Rezeptoren, welche mit Hormonen oder anderen Botenstoffen des Körpers interagieren. Die Stärke der Wechselwirkung, die sogenannte Bindungsenergie, ist entscheidend für die Wirksamkeit des Medikaments. Neben klassischen Laborexperimenten werden heutzutage auch quantenchemische Rechenmethoden verwendet, um diese Wechselwirkungsenergie zu bestimmen bzw. vorherzusagen.

    Trotz enormer Fortschritte, sowohl im Bereich der Hard- als auch der Software, ist die exakte quantenmechanische Berechnung der Wechselwirkungsenergie zweier Moleküle auf klassischen Computern immer noch eine große Herausforderung. Insbesondere bei Substanzen, welche ein oder mehrere Metallatome als zentralen Bestandteil aufweisen, ist die exakte Beschreibung der Eigenschaften mit klassischen Computern nahezu unmöglich. Prominente Vertreter solcher Verbindungen sind Zytochrome, welche unter anderem in der Atmungskette eine wichtige Rolle spielen. Auch bei bestimmten Antitumortherapeutika findet sich oft ein Übergangsmetallatom als entscheidende Komponente.

    Seit der Physiknobelpreisträger Richard Feynman in den 80er Jahren des vergangenen Jahrhunderts vorgeschlagen hat, für die Simulation und Berechnung quantenmechanischer Systeme Quantencomputer zu verwenden, wurden bereits viele Fortschritte erzielt, um eines Tages Quantencomputer routinemäßig für physikalische Simulationen einzusetzen. Eines der vielversprechendsten Anwendungsgebiete ist dabei die Quantenchemie, welche versucht, Struktur und Eigenschaften von Molekülen auf exakter quantenmechanischer Basis vorherzusagen.

    Falls eines Tages Quantencomputer dazu in der Lage sein sollten, würde dies einen enormen Fortschritt in der Medikamentenentwicklung bedeuten. Bis dahin sind zwar noch viele Schritte nötig, aber die Zusammenarbeit von Wissenschafter*innen verschiedener Disziplinen wie Pharmazie, Chemie, Physik und Ingenieurwissenschaften sowie die Kooperation zwischen Universitäten und der Industrie wird in Zukunft die Erforschung neuer Medikamente, unter Einsatz von Quantencomputern, stark beschleunigen.


    Contact for scientific information:

    Univ.-Prof. Dr. Leticia González
    Institut für Theoretische Chemie
    Universität Wien
    1090 Wien, Währinger Straße 17
    T +43-1-4277-527 50
    M +43-664-602 77-527 50
    leticia.gonzalez@univie.ac.at


    Original publication:

    Raffaele Santagati, Alan Aspuru-Guzik, Ryan Babbush, Matthias Degroote, Leticia González, Elica Kyoseva, Nikolaj Moll, Markus Oppel, Robert M. Parrish, Nicholas C. Rubin, Michael Streif, Christofer S. Tautermann, Horst Weiss, Nathan Wiebe & Clemens Utschig-Utschig: "Drug design on quantum computers", Nature Physics (2024).
    DOI: 10.1038/s41567-024-02411-5
    https://www.nature.com/articles/s41567-024-02411-5


    More information:

    https://medienportal.univie.ac.at/media/aktuelle-pressemeldungen/detailansicht/a...


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Medicine
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).