idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/21/2024 11:37

Intricate processes in photosynthesis decoded using advanced electron microscopy technique

Kathrin Anna Kirstein Kommunikation, Marketing und Veranstaltungsmanagement
Humboldt-Universität zu Berlin

    An international team of researchers visualises atomic interactions in the protein structure called photosystem II and thus uncovers fundamental biochemical processes.

    Using cryo-electron microscopy a team of scientists from Humboldt-Universität zu Berlin (HU), the Swedish universities of Umeå and Uppsala and the University of Potsdam has succeeded in visualising atomic structures at an unprecedented resolution at the nanometre level underlying the process of photosynthesis. For the study, which was published in the renowned journal Science, the team specifically studied the protein structure known as photosystem II, in which the first step of photosynthesis takes place: Light is absorbed and used as an energy source to drive the splitting of water molecules into oxygen, protons and electrons.

    A decisive step towards understanding photosynthesis

    The high-resolution visualisation provides new insights into the interactions of hydrogens within photosystem II, which are crucial for the reaction driven by light energy. The team, led by Dr Rana Hussein and Prof Dr Athina Zouni from the Department of Biology at HU, Prof Dr Wolfgang Schröder from Umeå University and Prof Dr Johannes Messinger from Uppsala University, has thus taken a significant step in understanding the complex processes of photosynthesis.

    "By using cryo-electron microscopy, we can now observe the locations of hydrogens in photosystem II," says Prof Dr Athina Zouni. "This detailed view is crucial for understanding the process by which oxygen-evolving organisms convert light energy into chemical energy - a process that is fundamental to life on Earth."

    Prof Dr Holger Dobbek elaborates on the most important results of the study: "We use cryo-electron microscopy to show photosystem II with better resolution. This enabled us to detect hydrogens in several amino acid residues in the reaction centre sites, providing new information on the transfer of electrons and protons in photosystem II. Our research reveals the sequence of events leading to the second protonation of a mobile plastoquinone B. This profoundly renews our understanding of the electron transport chain in photosynthesis."

    Research method reaches far beyond the field of photosynthesis

    Dr Rana Hussein explains: "The innovative approach used in this study to determine the positions of protons and hydrogens is essential for understanding photosystem II and has a broad spectrum of applications. It can be applied to study various proteins to uncover mechanisms regarding hydrogens. This enables breakthroughs in multiple areas of biological and chemical research. Thus, the cryo-EM method used in this study has implications beyond photosynthesis ".

    In cryo-electron microscopy, protein complexes are cooled down to very low temperatures of up to -260 °C within fractions of a second. This shock freezing prevents the formation of ice crystals so that molecules keep their natural form. In the future, the visualisation of hydrogens could contribute to understanding other fundamental biochemical reactions, such as enzyme mechanisms, protein-ligand interactions or the dynamics of membrane proteins.

    Further Informationen

    Article in Science: Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II: http://www.science.org/doi/10.1126/science.adn6541


    Contact for scientific information:

    Rana Hussein
    Humboldt-Universität zu Berlin, Department of Biology

    Email: husseinr@hu-berlin.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).