idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/27/2024 12:11

How fungi colonize plant roots

Anna Euteneuer Kommunikation und Marketing
Universität zu Köln

    Researchers at the University of Cologne’s CEPLAS Cluster of Excellence on Plant Sciences have identified two fungal enzymes that hijack the immune system of plants, playing a critical role in the colonization of plant roots. These findings open new avenues for interventions in both medicine and agriculture / publication in ‘Cell Host & Microbe’

    In nature, plant roots are always colonized by fungi. This interaction can be either mutualistic, benefiting both the plant and the fungus, or pathogenic, where the fungus harms the host plant. A research group led by Professor Dr Alga Zuccaro at the CEPLAS Cluster of Excellence has now deciphered how the beneficial root fungus Serendipita indica successfully colonizes plant roots of the model plant Arabidopsis thaliana. Initially, the fungus colonizes living root cells. Subsequently, limited cell death is triggered in the host plant, facilitating successful colonization without causing significant harm. The mechanisms controlling this host cell death are largely unknown. The team discovered now that Serendipita indica secretes two enzymes, NucA and E5NT, which produce the molecule deoxyadenosine (dAdo). This molecule activates a regulated cell death in plants, enabling the fungus to colonize the root system. The study ‘A nucleoside signal generated by fungal endophyte regulates host cell death and promotes root colonization’ was published in Cell Host & Microbe.

    The researchers show that dAdo is initially produced outside host cells in the apoplast. In a subsequent step, dAdo enters the plant cell through the membrane transporter ENT3, where it hijacks the host’s immune system to induce cell death. This phenomenon, as described by Professor Zuccaro’s team, is not limited to plants. A similar process occurs in human patients during interactions between the pathogenic bacterium Staphylococcus aureus and human immune cells.

    ‘We found that the beneficial root fungus Serendipita indica uses two enzymes to produce dAdo, much like S. aureus, to induce cell death and enable successful colonization. This demonstrates that the mechanism is conserved across different microbes and lifestyles,’ said Professor Alga Zuccaro. The findings underscore the crucial interplay between microbial colonization and the host’s immune metabolism, paving the way for new strategies in medicine and agriculture. ‘By understanding these shared mechanisms, we can develop more effective approaches to manage both harmful and beneficial microbes in human health and crop production.’


    Contact for scientific information:

    Professor Dr Alga Zuccaro
    Cluster of Excellence on Plant Sciences (CEPLAS)
    azuccaro@uni-koeln.de


    Original publication:

    https://www.sciencedirect.com/science/article/pii/S1931312824004062?via%3Dihub


    More information:

    https://www.sciencedirect.com/science/article/pii/S1931312824004062?via%3Dihub
    https://portal.uni-koeln.de/en/universitaet/aktuell/news/news-detail/how-fungi-c...
    https://www.ceplas.eu/en/home


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).