idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/24/2005 10:19

TU Braunschweig: Plastiklaser emittieren erstmals UV-Licht

Dr. Elisabeth Hoffmann Presse und Kommunikation
Technische Universität Carolo-Wilhelmina zu Braunschweig

    Wissenschaftlern der Technischen Universität Braunschweig ist es erstmals gelungen, einen organischen Halbleiterlaser zu realisieren, der Licht im ultravioletten Spektralbereich emittiert (Advanced Materials, 17, S. 31 (2005)). Diese sehr kostengünstig herstellbaren Photonenquellen sollen zukünftig in Bereichen der Life-Sciences, etwa der Gen- und Proteinanalyse, eingesetzt werden, so erklärt Dr. Thomas Riedl, der Leiter der Arbeitsgruppe Organische und Anorganische Laser am Institut für Hochfrequenztechnik (Leitung: Prof. Dr. Wolfgang Kowalsky) der TU Braunschweig.

    Wissenschaftlern der TU Braunschweig ist es erstmals gelungen, einen organischen Halbleiterlaser zu realisieren, der Licht im ultravioletten Spektralbereich emittiert (Advanced Materials, 17, S. 31 (2005)). Diese sehr kostengünstig herstellbaren Photonenquellen sollen zukünftig in Bereichen der Life-Sciences, etwa der Gen- und Proteinanalyse, eingesetzt werden, so erklärt Dr. Thomas Riedl der Leiter der Arbeitsgruppe Organische und Anorganische Laser am Institut für Hochfrequenztechnik (Leitung: Prof. Dr. Wolfgang Kowalsky) der TU Braunschweig.

    Optoelektronische Bauelemente, die aus organischen Molekülen bestehen, haben in den letzten Jahren einen regelrechten Boom erfahren. Displays auf Basis so genannter OLEDs (organic light emitting diodes) erobern gegenwärtig Marktanteile und versprechen als Konkurrenz zu etablierten LCD- oder Plasmabildschirmen höhere Farbbrillianz, einen geringeren Energieverbrauch sowie niedrigere Herstellungskosten.

    Die Braunschweiger Wissenschaftler, die auch an der Entwicklung der OLEDs arbeiten, nutzen die Tatsache, dass sich organische Moleküle ebenfalls zum Bau von Lasern eignen. Sie arbeiten zusammen mit Chemikern, Physikern und Elektrotechnikern in einem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Forscherverbund zur Herstellung und Charakterisierung organischer Dünnschicht-Laser. Im Rahmen dieses Projektes wurden bereits organische Laserstrukturen hergestellt, die den gesamten sichtbaren Spektralbereich abdecken - nicht aber den für viele Anwendungen hoch interessanten ultravioletten Spektralbereich.

    Eine der größten Herausforderungen war es, ein hinreichend stabiles organisches Molekül zu finden, das Licht im UV-Bereich verstärken kann, so Dipl.-Ing. Torsten Rabe, Doktorand am Institut für Hochfrequenztechnik. Zu diesem Zweck hat sich die Braunschweiger Arbeitsgruppe mit der Firma Covion Organic Semiconductors in Frankfurt zusammengetan und einen geeigneten Kandidaten aus der Klasse der so genannten Spiro-Moleküle gefunden. Diese etwa zwei Nanometer kleinen Moleküle sehen aus wie winzige Panzersperren. Sie bilden beim Aufdampfen im Vakuum äußerst stabile dünne Filme. Darüber hinaus emittieren diese Moleküle bei optischer Anregung sehr effizient ultraviolettes Licht.

    Die zusammen mit der Physikalisch Technischen Bundesanstalt (PTB) auf Plastikfolien hergestellten organischen UV-Laser senden Lichtpulse mit einer Leistung von bis zu 6,8 Watt aus. Dies reicht aus, um typische Biofluoreszenzmarker zur deutlich sichtbarer Lichtemission anzuregen. Die Wellenlänge der Laser kann über etwa 18 Nanometer zwischen 377,7 -395 Nanometer abgestimmt werden und lässt sich damit genau so einstellen, dass ein bestimmter Farbstoff das Licht optimal absorbieren kann. Das macht Fluoreszenzanalysen deutlich effizienter. Einen derart großen Wellenlängenabstimmbereich findet man bei anorganischen Laserdioden in diesem Spektralbereich nicht.

    Zukünftig wollen die Forscher mit organischen Lasern noch tiefer ins UV vordringen. Sie haben sich außerdem zum Ziel gesetzt, in den kommenden zwei Jahren den ersten elektrisch betriebenen organischen Laser zu realisieren. "Weltweit ist das bisher noch niemandem gelungen. Die Voraussetzungen sind aber grundsätzlich vorhanden. Alle von uns verwendeten organischen Materialien sind in der Lage, elektrischen Strom zu leiten. OLEDs lassen sich ja auch elektrisch betreiben. Der Unterschied beim Laser ist dabei allerdings, dass die erforderlichen Ströme etwa zehntausend mal höher sind als bei OLEDs - bisher zuviel für organische Materialien. Da ist noch Forschungsarbeit zu leisten.", erklärt Riedl.

    Kontakt:

    Dr. Thomas Riedl,
    Dipl.-Ing. Torsten Rabe

    Institut für Hochfrequenztechnik
    Technische Universität Braunschweig
    Schleinitzstr. 22
    D-38106 Braunschweig, Germany

    Tel.: +49-531-391-2008 bzw. 2016
    Fax: +49-531-391-2045
    e-Mail: t.riedl@tu-bs.de

    Die Abbildungen sind bei Bedarf auch in höherer Auflösung erhältlich.


    More information:

    http://www.tu-braunschweig.de/ihf
    http://www.tu-braunschweig.de/ihf/ag/photonik


    Images

    Bauteilkonzept des organischen Festkörperlasers. Der Resonator wird durch eine periodische Oberflächenstruktur erzeugt, auf die ein dünner Film des organischen Materials (hier blau) aufgebracht wird. Die Lichtemission erfolgt senkrecht zur Oberfläche.
    Bauteilkonzept des organischen Festkörperlasers. Der Resonator wird durch eine periodische Oberfläch ...
    Grafik: TU Braunschweig, IHF
    None

    Arbeitsgruppe Laser am Institut für Hochfrequenztechnik (von links: Daniel Schneider, Thomas Riedl, Patrick Görrn, Torsten Rabe)
    Arbeitsgruppe Laser am Institut für Hochfrequenztechnik (von links: Daniel Schneider, Thomas Riedl, ...
    Foto: TU Braunschweig, IHF
    None


    Criteria of this press release:
    Biology, Chemistry, Electrical engineering, Energy, Information technology, Materials sciences, Mathematics, Physics / astronomy
    transregional, national
    Research results
    German


     

    Bauteilkonzept des organischen Festkörperlasers. Der Resonator wird durch eine periodische Oberflächenstruktur erzeugt, auf die ein dünner Film des organischen Materials (hier blau) aufgebracht wird. Die Lichtemission erfolgt senkrecht zur Oberfläche.


    For download

    x

    Arbeitsgruppe Laser am Institut für Hochfrequenztechnik (von links: Daniel Schneider, Thomas Riedl, Patrick Görrn, Torsten Rabe)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).