idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/29/2006 10:28

Magnetic Bose-Einstein-condensation achieved at room temperature

Norbert Frie Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfaelische Wilhelms-Universität Münster

    Physicists from the University of Muenster, Germany, realized novel quantum state of magnetic quantum waves without any cooling

    Bose-Einstein-condensation (BEC) is one of the most fascinating phenomena, illustrating the quantum nature of matter. Theoretically predicted by Satyendra Nath Bose and Albert Einstein in 1924, it describes the formation of a collective super-quantum state in a gas of identical particles (Bose particles). Typically, BEC takes only place if the density of the particles exceeds a critical value. To reach this value in turn, one has either to decrease the temperature of the particles or to increase their density. The first way implies experiments at temperatures which are very close to the absolute zero. Being long time one of the biggest experimental challenges of the century, the observation of BEC in ultra-cold diluted alkali gases was awarded in 2001 with the Nobel Prize in physics. Since this time, it seemed impossible to observe BEC of atoms at room temperature, since the necessary density exceeds all achievable gas densities. Atoms at such densities form solids or liquids.
    In contrast, magnon gases - quanta of magnetic waves in solids - exist at room temperature in the gas state. Their density however was up to now too small to reach the BEC-transition.

    A group of physicists led by Prof. Sergej Demokritov from the Institute of Applied Physics, University of Münster, in cooperation with physicists from Kaiserslautern University of Technology (Germany), Oakland University (USA), and Kiev University (Ukraine) has recently found a tricky way to enhance the number of magnons in the gas significantly by exciting additional magnons using microwaves. Thus, the number of magnons in the gas could be increased considerably. Although the additional magnons exist only during one millionth of a second, the scientists were able to investigate the gas behaviour using a laser probe beam technique. Thus, the scientists from Münster who are performing their work in the Münster Center for Nonlinear Science, have succeeded to show that additional magnons in fact initiate the condensation of magnons in a collective quantum state even at room temperature, as it was predicted by A. Einstein. A report on this work has been recently published in Nature.


    More information:

    http://www.uni-muenster.de/Physik.AP/Demokritov/


    Images

    Prof. Dr. Sergej Demokritov vom Institut für Angewandte Physik der Universität Münster
    Prof. Dr. Sergej Demokritov vom Institut für Angewandte Physik der Universität Münster
    Grewer/upm
    None

    Prof. Dr. Sergej Demokritov im Institut für Angewandte Physik der Universität Münster
    Prof. Dr. Sergej Demokritov im Institut für Angewandte Physik der Universität Münster
    Grewer/upm
    None


    Criteria of this press release:
    Mathematics, Physics / astronomy
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).