idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/29/2010 12:33

Sehen mit den grauen Zellen: Neue Mikroskopie-Methode macht Nervenschaltungen im Gehirn sichtbar

Dr. Ulrich Marsch Zentrale Presse & Kommunikation
Technische Universität München

    Wenn sich ein Gegenstand vor unserem Auge bewegt, feuern bestimmte Nervenzellen in unserem Hinterkopf elektrische Signale – je nach Bewegungsrichtung sind andere Zellen aktiv. Wissenschaftler der Technischen Universität München (TUM) können jetzt im Gehirn beobachten, wie einzelne dieser Nervenzellen solche Bewegungssignale empfangen und verarbeiten: Erstmals kann eine neue Mikroskopie-Methode einzelne, ein Tausendstel Millimeter kleine Nervenverschaltungen (Synapsen) darstellen. In Zukunft könnte die Methode verstehen helfen, wie Lernen auf der Ebene einer Nervenzelle funktioniert. Die Forschungsergebnisse wurden jetzt in der Zeitschrift Nature veröffentlicht.

    Licht, das auf die Netzhaut des menschlichen Auges fällt, trifft dort auf 126 Millionen Sinneszellen, die es in elektrische Signale umwandeln. Bereits die kleinste Einheit des Lichts, ein Photon, kann eine der Sinneszellen stimulieren. Die Folge: Ungeheure Datenmengen müssen verarbeitet werden, damit wir sehen können. Die Datenverarbeitung beginnt bereits in der Netzhaut, aber das fertige Bild entsteht erst im Gehirn, genauer: in der Sehrinde im hinteren Teil des Großhirns.

    Die Wissenschaftler um den TUM-Neurophysiologen Prof. Arthur Konnerth interessieren sich für eine bestimmte Sorte von Nervenzellen in der Sehrinde, die auf Bewegungen reagiert. Ob vor dem Auge ein Balken von unten nach oben wandert oder von rechts nach links: Stets reagieren andere Nervenzellen der Sehrinde. Wie die gesendeten Impulse dieser "Richtungs"-Neuronen aussehen, ist gut bekannt - doch wie sieht das Eingangssignal aus? Das ist nicht leicht zu beantworten, denn jede der Nervenzellen besitzt einen ganzen Baum winziger, verästelter Antennen, an die hunderte anderer Nervenzellen mit ihren Synapsen andocken.

    Um mehr über das Eingangssignal herauszufinden, schauten Konnerth und seine Mitarbeiter einer Maus beim Sehen zu. Dazu verfeinerten sie eine Mikroskopie-Methode, mit der sich bis zu einem halben Millimeter in das Hirngewebe hineinblicken und eine einzelne Zelle beobachten lässt, die sogenannte 2-Photonen-Fluoreszenz-Mikroskopie. Gleichzeitig leiteten sie mit haarfeinen Pipetten elektrische Signale an einzelnen Baum-Fortsätzen derselben Nervenzelle ab (Patch-Clamp-Technik). Konnerth: "Ähnliche Versuche wurden bisher nur in Kulturschalen mit gezüchteten Nervenzellen gemacht, lebendes Gewebe ist viel komplexer. Da es sich immer ein bisschen bewegt, war es sehr schwierig, alle Verästelungen eines Neurons im Bild so hoch aufzulösen, dass wir einzelne Synapsen darstellen konnten."

    Der Lohn der Anstrengungen: Konnerth und seine Kollegen entdeckten, dass ein "Richtungs"-Neuron bei mehreren, unterschiedlichen Bewegungen des Balkens vor dem Auge Signale von den mit ihm vernetzten Nervenzellen empfängt. "Hier wird es richtig spannend", meint Konnerth. Denn die "Richtungs"-Nervenzelle versendet nur ein Ausgangssignal wie zum Beispiel "bewegt sich von unten nach oben". Offenbar verrechnet sie also die unterschiedlichen Eingangssignale miteinander und reduziert damit die Fülle eintreffender Einzeldaten auf wesentliche Informationen, die für das klare Sehen einer Bewegung wichtig sind.

    In Zukunft will Konnerth mit seinem Forschungsansatz auch den Prozess des Lernens an einer einzelnen Nervenzelle beobachten. Viele Nervenenden senden praktisch nie Signale an den Antennen-Baum eines "Richtungs"-Neurons. Wenn das Auge etwa andere Arten von Bewegungen wahrnimmt, könnten solche stummen Nervenenden aktiv werden. Das würde den Verrechnungsmechanismus der "Richtungs"-Nervenzelle so verändern, dass sie ihre bevorzugte Richtung ändert: Die Maus würde lernen, bestimmte Bewegungen vielleicht besser oder schneller zu sehen. "Da wir mit unserer Methode gleichzeitig die Verschaltung und das Verhalten ein und derselben Nervenzelle im Gehirn beobachten können, werden wir einen wichtigen Beitrag zum Verständnis von Lernen leisten können", ist Konnerth überzeugt. "Hier an der TU München arbeiten wir eng mit Physikern und Ingenieuren zusammen. So haben wir beste Chancen, die räumliche und zeitliche Auflösung der Bilder weiter zu verbessern."

    Nature-Artikel:
    Dendritic organization of sensory input to cortical neurons in vivo
    Hongbo Jia, Nathalie L. Rochefort, Xiaowei Chen, Arthur Konnerth
    DOI: 10.1038/nature08947

    Die Arbeit wurde unterstützt durch Mittel der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Schiedel-Stiftung.

    Kontakt:
    Prof. Arthur Konnerth
    Fellow des Institute for Advanced Study (IAS) der TUM (1)
    Direktor des Instituts für Neurowissenschaften
    Technische Universität München
    Tel. 089 4140 3351
    office.konnerth@lrz.tum.de
    www.ifn.me.tum.de

    (1) Das TUM Institute for Avanced Study (TUM-IAS) wurde mit Mitteln der Exzellenzinitiative gegründet und bietet international ausgewiesenen Spitzenforschern (IAS-Fellows) ein Arbeitsumfeld, in dem sie frei von den bürokratischen Belastungen des klassischen Universitätsalltags neue, risikoreiche und interdisziplinäre Forschungsprojekte verfolgen können. TUM-IAS steht wissenschaftlichen Pionieren aus der TUM, der forschenden Industrie und forschenden Einrichtungen aus dem In- und Ausland offen.


    More information:

    http://mediatum2.ub.tum.de/node?id=977436 Bildmaterial


    Images

    Criteria of this press release:
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).