idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/06/2002 14:11

"NATURE": Uni Paderborn und Walter Schottky Institut/München: Kontakt zur Welt der künstlichen Atome

Tibor Werner Szolnoki Stabsstelle Presse, Kommunikation und Marketing
Universität Paderborn

    Wissenschaftler von der Universität Paderborn und vom Walter Schottky Institut in München haben einen neuen Meilenstein gesetzt auf dem Weg hin zu einer zukünftigen Quanten-Informationstechnologie. Wie das renommierte Wissenschaftsmagazin NATURE in seiner Ausgabe vom 8. August 2002 berichtet, ist es Ihnen gelungen, künstliche Atome elektrisch zu kontaktieren und so Quanten-Bits (Qubits) mit hoher Effizienz auszulesen.

    (Presseinformation für Fachzeitschriften; Ressorts Physik, Elektrotechnik, Informationstechnologie)

    Kontakt: Prof. Dr. Artur Zrenner, Universität Paderborn, Fachbereich Physik, Tel.: 05251-60-2692, Fax: -60-3710, zrenner@physik.uni-paderborn.de

    In Ihrem Beitrag berichten die Autoren A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler und G. Abstreiter über ein neues optoelektronisches Bauelement, eine Photodiode, die nur ein einzelnes Quantensystem in ihrer aktiven Zone enthält. Man könnte eine derart winzige Photodiode einfach nur als die kleinste Solarzelle der Welt bezeichnen, ihre Funktionalität erschließt jedoch weit mehr: Die kohärente Welt der Quantensysteme für zukünftige Anwendungen im Bereich der Quanten-Informationsverarbeitung.

    Kernstück dieser neuartigen Diode ist eine einzelne Halbleiter-Nanostruktur, ein sog. Quantenpunkt, der durch Selbstorganisation beim Kristallwachstum mittels Molekularstrahlepitaxie entsteht. Der Quantenpunkt ist aus dem Halbleitermaterial InGaAs zusammengesetzt und in eine Matrix aus GaAs eingebettet. Mit einem Durchmesser von 20 nm und einer Höhe von 5 nm ist er so klein, dass sein optisches und elektrisches Verhalten von den Gesetzen der Quantenmechanik bestimmt wird - man spricht von einem künstlichen Atom. Für Anwendungen im Bereich der Quanten-Informationsverarbeitung können künstliche Atome als Träger von Quanten-Bits verwendet werden, die im Gegensatz zu konventionellen Bits nicht nur die reinen Zustände "0" und "1" annehmen können, sondern auch beliebige Mischzustände.

    Im Ihrem Beitrag benutzen die Autoren Elektron-Loch-Paare (Exzitonen) zur Darstellung von Quanten-Bits im künstlichen Atom. Mittels extrem kurzer optischer Laserpulse ist es gelungen, Exziton-Quanten-Bits gezielt herzustellen. Dabei entspricht der Zustand "0" einem "leeren" künstlichen Atom, der Zustand "1" einer Besetzung mit genau einem Exziton. Mit steigender Intensität der Laserpulse oszilliert die resultierende Besetzung zwischen "0" und "1" (Rabi-Oszillation), eine grundlegende Eigenschaft kohärenter Quantensysteme. Ein sehr effektives Auslesen dieser Quanten-Bits ist schließlich im elektrischen Feld der Photodiode möglich. Das Exziton wird ionisiert, Elektron und Loch verlassen das künstliche Atom durch Tunneln und tragen damit zum Photostrom bei.

    Besonders interessant wird die Situation bei der gezielten Herstellung des Zustands "1", da hier genau ein Exziton im künstlichen Atom vorliegt. Jeder Auslesevorgang führt hier also zur Trennung genau eines Elektron-Loch-Paars und damit zum Transport genau einer Elementarladung durch den Stromkreis. Eine kohärent angeregte Quantenpunkt-Photodiode ist demnach eine optisch getriggerte Einzel-Ladungsquelle, die einzelne Elektronen oder Löcher als Antwort auf einzelne Laserpulse, quasi auf Bestellung liefert. Das neue Quanten-Bauelement kann also frequenzgesteuerte Ströme gemäß der einfachen Beziehung I=fe erzeugen, wobei f die Wiederholfrequenz der Laserpulse und e die Elementarladung ist. Mit einem derartigen Bauelement ist es also möglich, optische Anregungen in einzelnen Quantensystemen mit hoher Effizienz in deterministische elektrische Ströme umzusetzen. In der Zukunft wird dadurch das elektrische Auslesen exzitonischer Quanten-Gatter möglich. Diese neue und bis jetzt unerreichte optoelektronische Funktionalität verbindet also nun die Welt der kohärenten optischen Anregungen im künstlichen Atom mit jener der Einzel-Elektron-Effekte im Bereich der Elektronik.

    http://fb6www.uni-paderborn.de/ag/ag-zr/files/single_qd_diode.htm

    Die folgende Darstellung ist über die Internetseite abrufbar:
    Künstliches Atom unter Laserbeschuss: Die neue Quantendiode macht's möglich, jeder Laserpuls schickt genau ein Elektron auf den Weg. QuBits können nun elektronisch ausgelesen werden.


    More information:

    http://fb6www.uni-paderborn.de/ag/ag-zr/files/single_qd_diode.htm


    Images

    Criteria of this press release:
    Electrical engineering, Energy, Information technology, Mathematics, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).