idw - Informationsdienst
Wissenschaft
Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und des Karlsruher Instituts für Technologie (KIT) ist ein außergewöhnliches Experiment gelungen: Sie konnten nachweisen, wie Magnetismus – der sich gemeinhin als Kraftwirkung zwischen zwei magnetisierten Objekten äußert – auch innerhalb eines einzigen Moleküls wirkt. Diese für die Grundlagenforschung sehr bedeutsame Entdeckung liefert den Wissenschaftlern ein neues Werkzeug, Magnetismus als elementares Phänomen der Physik besser zu verstehen. Ihre Ergebnisse haben die Forscher am 15. Juli in der Fachzeitschrift Nature Nanotechnology veröffentlicht.*
Die kleinste Einheit eines Magneten ist das magnetische Moment eines einzelnen Atoms oder Ions. Koppelt man zwei solcher magnetischer Momente zusammen, ergeben sich zwei Möglichkeiten: Entweder die magnetischen Momente addieren sich zu einem stärkeren Moment – oder sie kompensieren einander und der Magnetismus verschwindet. Quantenphysikalisch korrekt spricht man von einem Triplett oder einem Singulett.
Ein Forscherteam um Prof. Mario Ruben (KIT) und Prof. Heiko B. Weber (FAU) wollten testen, ob man den Magnetismus eines Paars magnetischer Momente in einem einzelnen Molekül elektrisch messen kann. Dafür hatte die Arbeitsgruppe von Mario Ruben ein Molekül aus zwei Kobalt-Ionen für das Experiment maßgeschneidert. Heiko B. Weber und sein Team haben das Molekül in Erlangen in einem so genannten Einzelmolekülkontakt untersucht. Dabei bringt man zwei Metallelektroden so nahe zusammen, dass das Molekül – dessen Länge etwa zwei Nanometer beträgt – über viele Tage hinweg dazwischen stabil gehalten wird, während gleichzeitig der Strom durch den Kontakt gemessen werden kann. Diesen Experimentaufbau haben die Wissenschaftler dann unterschiedlichen – bis hin zu sehr tiefen –Temperaturen ausgesetzt.
Es zeigte sich, dass der Magnetismus so gemessen werden kann: Der magnetische Zustand innerhalb des Moleküls wurde als Kondo-Anomalie sichtbar – so nennt sich ein Effekt, der den elektrischen Widerstand zu tiefen Temperaturen hin schrumpfen lässt. Er tritt nur dann auf, wenn tatsächlich Magnetismus wirkt – und dient somit als Nachweis. Zugleich gelang es den Forschern, diesen Kondo-Effekt mit der angelegten Spannung an- und auszuschalten. Eine genaue theoretische Analyse in der Arbeitsgruppe von PD Karin Fink (KIT) präzisiert die verschiedenen komplexen Quantenzustände des Kobalt-Ionenpaars. Es ist somit gelungen, elementare Physik in einem einzelnen Molekül nachzustellen.
*doi: 10.1038/nnano.2013.133
Prof. Dr. Heiko B. Weber
Tel.: 09131/85-28421
heiko.weber@physik.uni-erlangen.de
Elementare Physik: Forscher konnten im Experiment nachweisen, dass innerhalb eines einzigen Moleküls ...
None
Criteria of this press release:
Journalists
Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).