idw - Informationsdienst
Wissenschaft
Menschliche Zellen verformen sich unter Krafteinwirkung. Aber wie stellen sie ihre ursprüngliche Form wieder her? Diesen für die Medizin und Biologie wichtigen Mechanismus beschreiben Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) zusammen mit internationalen Kollegen nun erstmalig in einem Artikel in der Fachzeitschrift Nature Materials (dx.doi.org/10.1038/nmat4689)
Menschliche Zellen sind leicht verformbar: Unter externen Kräften dehnen sie sich oder werden gestaucht. Die Beziehung zwischen Kraft und Zelldeformation ist bei vielen Krankheiten wie Krebs, Lungen- und Herzkrankheiten sowie Muskelstörungen verändert. Um diese Krankheiten besser zu verstehen, ist es wichtig, die mechanischen Zelleigenschaften zu untersuchen.
Wissenschaftliche Modelle beschreiben inzwischen sehr genau, wie sich Zellen unter externen Kräften verändern. Offen ist bisher jedoch die Frage, wie Zellen nach einer Belastung wieder ihre ursprüngliche Form herstellen. Wie schnell nehmen Blutkörperchen beispielsweise ihre Ursprungsform an, nachdem sie durch schmale Kapillaren gepresst wurden? Was passiert mit unseren Lungenzellen, die beim herzhaften Gähnen gedehnt werden? Oder mit Muskelzellen, die bei einen Unfall überdehnt wurden?
Biophysiker der FAU, des Erlanger Max-Planck-Instituts für die Physik des Lichts und der University of Arizona haben nun eine Antwort auf diese Fragen gefunden. Wirken äußere Kräfte auf die Zelle ein, führt dies zu einer Zelldeformation, die aus zwei verschiedenen Anteilen besteht: einer viskoelastischen Verformung, die sich wieder vollständig umgekehrt, sobald die Kraft nicht länger einwirkt, und einer plastischen Verformung, die je nach Krafteinwirkung und Dauer entweder längere Zeit oder für immer bestehen bleibt. Ein Beispiel dafür sind die sogenannten „Tunnel“, bei denen ein Ohrloch immer weiter ausgedehnt wird.
Die Wissenschaftler um Prof. Dr. Ben Fabry, Dr. Navid Bonakdar und Richard Gerum konnten zeigen, dass plastische Deformationen der Zelle durch mikroskopische Schäden im Zellskelett hervorgerufen werden, einem Netzwerk aus faserartigen Strukturen, die das Zellinnere durchziehen und die mechanische Stabilität der Zelle sichern. Die Ergebnisse helfen dabei, kranke Zellen im Vergleich zu gesunden Zellen genauer zu charakterisieren – und damit beispielsweise Krebs, Lungen- oder Herzkrankheiten besser zu verstehen.
Weitere Informationen:
Prof. Dr. Ben Fabry
Tel.: 09131/85-25610
bfabry@biomed.uni-erlangen.de
Criteria of this press release:
Journalists
Biology, Medicine, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).