idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/03/2017 09:22

Chemists connect three components with new coupling reaction

Dr. Christina Heimken Presse- und Informationsstelle
Westfälische Wilhelms-Universität Münster

    In the current issue of the "Science" magazine, a team of chemists led by Prof. Armido Studer from the Institute of Organic Chemistry at Münster University present a new approach which enables three – and not, as previously, two – chemical components to be "coupled" in one single reaction without any transition metal.

    In the current issue of the "Science" magazine, chemists at Münster University present a new approach which for the first time enables three – and not, as previously, two – chemical components to be "coupled" in one single reaction, without any metals to aid the process. The researchers succeeded in producing not only pharmaceutically relevant compounds containing fluorine, but also various γ-lactones. These organic compounds occur widely in various types of fruit and also, for example, as flavouring substances in whisky and cognac.

    "What is remarkable is that for the reaction process no expensive transition metals are needed as catalysts," says Prof. Armido Studer from the Institute of Organic Chemistry at Münster University, the lead author of the study. This represents an important further development of the classic variant, he says, especially with a view to the increasing relevance of sustainable, environmentally-friendly chemistry – so-called green chemistry.

    The background: one of the greatest challenges for organic chemists is to create specific bonds between carbon atoms in various chemical components. This is, however, essential for the construction of complex, pharmaceutically active and biologically relevant molecules. "The tools which are particularly important for this are so-called cross-coupling reactions," Studer explains. Probably the most famous example, he adds, is the "Suzuki-Miyaura coupling", which was awarded the Nobel Prize for Chemistry in 2010. This reaction, used by the chemical industry in tonne scale, makes it possible to link two chemical components, although one of the components has to contain a reactive boron moiety. What is decisive for the reaction process, says Studer, is the presence of expensive transition metals such as palladium, which brings the two reactants together, so that in the end a carbon-carbon bond is formed.

    The method now developed by the Münster chemists includes the formation of two carbon-carbon bonds. "Unlike classic cross-couplings, however, the valuable boron moiety remains in the product," Studer explains. "At this point, further changes can then be made to the molecules in the same reaction vessel." This method makes it possible, he adds, to produce a large number of different derivatives.

    The researchers received financial support from the European Research Council (ERC) for their work.

    Original publication:

    Marvin Kischkewitz, Kazuhiro Okamoto, Christian Mück-Lichtenfeld, Armido Studer (2017): Radical-polar crossover reactions of vinylboron ate complexes. Science Vol. 355, Issue 6328, pp 936-938; DOI: 10.1126/science.aal3803


    More information:

    https://www.uni-muenster.de/Chemie.oc/studer/en/members.html Studer Research Group at Münster University
    http://science.sciencemag.org/content/355/6328/936 Original publication


    Images

    The new reaction, explained using plastic building bricks: In a single reaction, three (bottom) instead of two (top right) chemical components are linked via carbon-carbon bonds.
    The new reaction, explained using plastic building bricks: In a single reaction, three (bottom) inst ...
    Photo: WWU/Ludger Tebben
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).