idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/25/2017 17:00

The fastest light-driven current source

Dr. Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

    Graphene is up to the job

    In gases, insulating materials and semiconductors, scientists have already shown that it is possible to steer electrons with light waves and thus, in principle, to control current. However, this concept has not yet been applied to metals as light cannot usually penetrate the material to control the electrons inside. To avoid this effect, physicists in the working groups of Prof. Dr. Peter Hommelhoff and Prof. Dr. Heiko Weber used graphene – a semimetal consisting of only a single layer of carbon atoms. Even though graphene is an excellent conductor, it is thin enough to let some light penetrate the material and move the electrons.

    For their experiments, the scientists fired extremely short laser pulses with specially engineered waveforms onto graphene. When these light waves hit the graphene, the electrons inside were hurled in one direction, like a whiplash. ‘Under intense optical fields, a current was generated within a fraction of an optical cycle – a half femtosecond. It was surprising that despite these enormous forces, quantum mechanics still plays a key role,’ explains Dr. Takuya Higuchi from the Chair of Laser Physics, the first author of the publication.

    Two paths to the same destination

    The researchers discovered that the current generation process in the graphene follows complicated quantum mechanics. The electrons travel from their initial state to the excited state by two paths rather than one – similar to a forked road leading to the same destination. Like a wave, the electrons can split at the fork and flow on both roads simultaneously. Depending on the relative phase between the split electron waves, when they meet again, the current can be very large, or not present at all. ‘This is like a water wave. Imagine a wave breaks against a building wall and flows to the left and the right of the building at the same time. At the end of the building, both parts meet again. If the partial waves meet at their peak, a very large wave results and current flows. If one wave is at its peak, the other at its lowest point, the two cancel one another out, and there is no current,’ explains Prof. Dr. Peter Hommelhoff from the Chair of Laser Physics. ‘We can use the light waves to regulate how the electrons move and how much electricity is generated.’

    Will we see electronics controlled by light frequency in the future?

    The results are another important step in bringing electronics and optics together. In the future, the method could open a door for realizing ultrafast electronics operating at optical frequencies.

    The scientists have published their results, supported by the European Research Council (Consolidator Grant NearFieldAtto) and SFB 953 ‘Synthetic Carbon Allotropes', in the journal Nature: doi: 10.1038/nature23900

    Further information:
    Dr. Takuya Higuchi
    Phone: +49 9131 8528335
    takuya.higuchi@fau.de

    Prof. Dr. Peter Hommelhoff
    Phone: +49 9131 8527090
    peter.hommelhoff@fau.de

    Prof. Dr. Heiko Weber
    Phone: +49 9131 8528421
    heiko.weber@fau.de


    Images

    Schematic of the experiment for ultra-fast current generation: When the light wave (red) hits the graphene (honeycomb grid), an electronic current is generated instantly.
    Schematic of the experiment for ultra-fast current generation: When the light wave (red) hits the gr ...
    Image: FAU / Takuya Higuchi
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).