idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/04/2018 09:06

Making headway in infant leukaemia research

Dr. Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Around 600 children under the age of 15 are diagnosed with leukaemia each year in Germany. The effects are especially dramatic if this severe illness develops at birth or shortly afterwards. Research carried out at the Division of Genetics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) with support from the Institute for Human Genetics has now discovered another molecular cause for a particularly aggressive type of leukaemia in infants. The results have been published in the renowned journal ‘Blood’ (*doi: 10.1182/blood-2017-11-815035).

    While tumours tend to affect the health of older people, leukaemia (blood cancer) frequently affects children. A special type of leukaemia, which is particularly difficult to treat and often occurs in very young patients, is the subject of research carried out by Prof. Robert Slany and his team at the Division of Genetics at FAU.

    With this type of cancer, the genes in the white blood cells affected change slightly, causing two chromosomes to cross. This produces an abnormal protein that disrupts cell growth control. ‘The longer we study these classes of proteins, the clearer it becomes how adept these molecules are at interfering with cellular growth to such an extent that makes normal control virtually impossible,’ says Prof. Slany.

    The latest research results show that these proteins not only disrupt the production mechanism of the cells by accelerating the transcription mechanism of certain genes, but also change the structure of the gene itself, which intensifies the abnormal implementation of the genetic information even further. ‘It’s like driving a car on black ice – braking is impossible,’ explains Prof. Slany. The challenge for the future now lies in finding a suitable type of ‘grit’ for this black ice that slows down the proliferation of leukaemia cells to normal levels without damaging the other healthy cells in the body. The research findings have now been published in the journal ‘Blood’ with the following title: ‘The interaction of ENL with PAF1 mitigates polycomb silencing and facilitates murine leukemogenesis’.

    Information
    Prof. Dr. Robert Slany
    Phone: +49 9131 85 28527
    robert.slany@fau.de


    Images

    Criteria of this press release:
    Journalists
    Medicine
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).