idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/26/2018 09:15

Durchbruch bei industrieller CO2-Nutzung

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Professor Arne Skerra von der Technischen Universität München (TUM) ist es zum ersten Mal gelungen, in einer biotechnischen Reaktion gasförmiges CO2 als einen Grundstoff für die Produktion eines chemischen Massenprodukts zu verwenden. Es handelt sich um Methionin, das als essentielle Aminosäure vor allem in der Tiermast in großem Maßstab eingesetzt wird. Das neu entwickelte enzymatische Verfahren könnte die bisherige petrochemische Produktion ersetzen. Die Ergebnisse wurden nun in der Zeitschrift "Nature Catalysis" veröffentlicht.

    Die heute gängige industrielle Herstellung von Methionin erfolgt in einem 6-stufigen chemischen Prozess aus petrochemischen Ausgangsstoffen, bei der unter anderem hochgiftige Blausäure benötigt wird. Im Rahmen einer Ausschreibung lud das Unternehmen Evonik Industries – einer der weltweit größten Hersteller von Methionin – im Jahr 2013 Hochschulforscherinnen und -forscher ein, neue Verfahren vorzuschlagen, mit dem sich die Substanz gefahrloser herstellen lässt. Im Laufe des bisher verwendeten Prozesses entsteht das technisch unproblematische Zwischenprodukt Methional, das in der Natur als Abbauprodukt von Methionin vorkommt.

    „Ausgehend von der Überlegung, dass Methionin in Mikroorganismen von Enzymen unter Abgabe von CO2 zu Methional abgebaut wird, versuchten wir diesen Prozess umzukehren“, erklärt Professor Arne Skerra, Inhaber des Lehrstuhls für Biologische Chemie an der TUM. „Denn jede chemische Reaktion ist im Prinzip umkehrbar, allerdings oft nur unter hohem Einsatz von Energie und Druck.“ Mit diesem Konzept beteiligte sich Skerra an der Ausschreibung. Evonik prämierte die Idee und förderte das Projekt.

    Zusammen mit dem Postdoc Lukas Eisoldt begann Skerra, die Rahmenbedingungen für den Herstellungsprozess zu ermitteln und die nötigen Biokatalysatoren (Enzyme) herzustellen. Die Wissenschaftler unternahmen erste Versuche und erprobte, welcher CO2-Druck nötig wäre, um in einem biokatalytischen Prozess Methionin aus Methional herzustellen. Überraschend ergab sich eine unerwartet hohe Ausbeute schon bei relativ niedrigem Druck – etwa entsprechend dem Druck in einem Autoreifen von zirka zwei Bar.

    Aufgrund der bereits nach einem Jahr erzielten Erfolge verlängerte Evonik die Förderung, und nun untersuchte das Team, verstärkt durch die Doktorandin Julia Martin, die biochemischen Hintergründe der Reaktion und optimierte mit Hilfe von Protein-Engineering die beteiligten Enzyme.

    Effizienter als die Photosynthese

    In mehrjähriger Arbeit gelang es schließlich, die Reaktion im Labormaßstab nicht nur bis zu einer Ausbeute von 40 Prozent zu verbessern, sondern auch die theoretischen Hintergründe der biochemischen Abläufe aufzuklären.

    „Im Vergleich zur komplexen Photosynthese, in der die Natur ebenfalls auf biokatalytischem Wege CO2 als Baustein in Biomoleküle einbaut, ist unser Verfahren hochelegant und einfach“, berichtet Arne Skerra. „Die Photosynthese verwendet 14 Enzyme und hat eine Ausbeute von nur 20 Prozent, während unsere Methode bloß zwei Enzyme benötigt.“

    Das Grundmuster dieser neuartigen biokatalytischen Reaktion kann künftig auch Vorbild für die industrielle Herstellung anderer wertvoller Aminosäuren oder von Vorprodukten für Arzneimittel sein. Das Team von Professor Skerra wird das inzwischen patentierte Verfahren durch Protein-Engineering nun so weit verfeinern, dass es sich für die großtechnische Anwendung eignet.

    Damit könnte es zum ersten Mal einen biotechnologischen Herstellungsprozess geben, der gasförmiges CO2 als unmittelbaren chemischen Grundstoff nutzt. Bisher scheiterten Versuche, das klimaschädliche Treibhausgas stofflich zu verwerten, an dem äußerst hohen Energieaufwand, der dazu nötig ist.

    Weitere Informationen:
    Methionin ist eine Aminosäure, also ein Grundbaustein von Eiweißstoffen, der für viele Lebewesen – vor allem den Menschen – essentiell ist, aber von diesen nicht selbst produziert werden kann. Diese Aminosäure muss deshalb mit der Nahrung aufgenommen werden. Ähnlich wie Mineraldünger das Wachstum von Pflanzen beschleunigt, verbessert Methionin das Wachstum von Masttieren wie etwa Geflügel oder Fisch. Die Jahresproduktion von Methionin beträgt derzeit etwa eine Million Tonnen weltweit.


    Contact for scientific information:

    Prof. Dr. Arne Skerra
    Technische Universität München
    Lehrstuhl für Biologische Chemie
    Tel.: +49 (0)8161 71-4351
    E-Mail: skerra@tum.de


    Original publication:

    Martin, J., Eisoldt, L. & Skerra, A.: Fixation of gaseous CO2 by reversing a decarboxylase for the biocatalytic synthesis of the essential amino acid L-methionine, Nature Catalysis 1, 555-561, 07/2018. DOI 10.1038/s41929-018-0107-4


    More information:

    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34836/


    Images

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Chemistry, Zoology / agricultural and forest sciences
    transregional, national
    Research projects, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).