idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/09/2019 12:17

Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    Physiker des Exzellenzclusters Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, wie sich Elektronen bei ihrer Injektion in organische Halbleiterfilme verhalten. Simulationen und Experiment konnten eindeutig verschiedene Transportregime identifizieren. Die Studie wurde jetzt in „Nature Communications“ veröffentlicht.

    Ladungstransferprozesse spielen eine grundlegende Rolle bei allen elektronischen und optoelektronischen Bauelementen. Für Bauelemente basierend auf organischer Dünnfilmtechnologie sind dies u.a. die Injektion der Ladungsträger über die metallischen Kontakte und der Ladungstransport im organischen Film selbst. Injektionsprozesse an den Kontakten sind hierbei von besonderem Interesse, da für optimale Effizienten der Bauelemente die Kontaktwiderstände an den Grenzflächen minimiert werden müssen. Allerdings sind solche internen Grenzflächen nur schwer zugänglich und daher nicht gut verstanden.

    Das Team um den cfaed-Forschungsgruppenleiter Dr. Frank Ortmann (Computational Nanoelectronics Group) konnte nun gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, dass sich der elektronische Transportmechanismus bei der Injektion in einen organischen Film durch das sogenannte Marcus-Hüpfmodell beschreiben lässt, welches aus der Physikalischen Chemie bekannt ist und auf den amerikanischen Chemiker Rudolph Arthur Marcus zurückgeht. Durch vergleichende theoretische und experimentelle Untersuchungen konnten die in der Marcus-Theorie vorhergesagten Transportregime zweifelsfrei identifiziert werden. „Die von R.A. Marcus im Zusammenhang mit Fragestellungen der chemischen Synthese in den 50er Jahren abgeleiteten Vorhersagen, insbesondere das sogenannte ‚Invertierte Marcus-Regime‘, konnten erst viele Jahrzehnte später durch systematische Experimente zu chemischen Reaktionen bestätigt werden. Für seine wichtigen theoretischen Beiträge hat R.A. Marcus den Chemie-Nobelpreis 1992 verliehen bekommen.“, so Ortmann.

    „Nun ist der Nachweis des ‚Invertierten Marcus-Regimes‘, bei dem eine höhere Spannung einen niedrigeren Strom erzeugt, erstmalig in einem organischen Transistor gelungen, bei dem die Injektions-Spannung aktiv kontrolliert werden kann“, führt Ortmann weiter fort. Dies führe zum besseren Verständnis elektronischer und optoelektronischer organischer Bauelemente allgemein.

    Die Publikation wurde am 7.5.2019 in der Fachzeitschrift „Nature Communications“ veröffentlicht.

    Pressebild:
    HiRes-Download: https://bit.ly/2Lulciy
    Schematische Darstellung des Bauelements: a – Schematischer Querschnitt des Bauelements. b – Arbeitsweise des Hot-Elektronen-Transistors. Elektronen werden durch Anlegen einer negativen Spannung zwischen Emitter und Basis in den molekularen Halbleiter injiziert und dort nachgewiesen. Diese heißen Elektronen befinden sich nicht im Gleichgewicht mit den thermischen Elektronen in der Basis, und können nicht durch eine höhere Temperatur beschrieben werden. Die Messungen können sowohl mit als auch ohne Kollektor-Basisspannung durchgeführt werden.

    Über die Computational Nanoelectronics Group:
    Die Forschungsgruppe am Center for Advancing Electronics Dresden (cfaed) unter Leitung von Dr. Frank Ortmann erforscht elektronische Eigenschaften und Ladungstransporteigenschaften neuartiger Halbleitermaterialien. Hierbei sind organische Halbleiter aktuell ein wichtiger Schwerpunkt der Arbeit, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Emmy Noether-Programms gefördert wird. Die Gruppe ist seit 2017 am cfaed angesiedelt.

    Informationen für Journalisten:
    Matthias Hahndorf
    Center for Advancing Electronics Dresden, TU Dresden
    Öffentlichkeitsarbeit
    Tel. +49 (0)351 463-42847
    Email: matthias.hahndorf@tu-dresden.de


    Contact for scientific information:

    Dr. Frank Ortmann
    Center for Advancing Electronics Dresden, TU Dresden
    Gruppenleiter Computational Nanoelectronics Group
    Tel.: +49 351 463-43260
    E-Mail: frank.ortmann@tu-dresden.de


    Original publication:

    Titel der Arbeit: “Tuning the charge flow between Marcus regimes in an organic thin-film device”
    Web: https://www.nature.com/articles/s41467-019-10114-2
    DOI: 10.1038/s41467-019-10114-2
    Autoren: A. Atxabal, T. Arnold, S. Parui, S. Hutsch, E. Zuccatti, R. Llopis, M. Cinchetti, F. Casanova, F. Ortmann, L.E. Hueso


    More information:

    https://cfaed.tu-dresden.de/ortmann-home


    Images

    Schematische Darstellung des Bauelements
    Schematische Darstellung des Bauelements
    Frank Ortmann
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).