Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
09.05.2019 12:17

Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    Physiker des Exzellenzclusters Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, wie sich Elektronen bei ihrer Injektion in organische Halbleiterfilme verhalten. Simulationen und Experiment konnten eindeutig verschiedene Transportregime identifizieren. Die Studie wurde jetzt in „Nature Communications“ veröffentlicht.

    Ladungstransferprozesse spielen eine grundlegende Rolle bei allen elektronischen und optoelektronischen Bauelementen. Für Bauelemente basierend auf organischer Dünnfilmtechnologie sind dies u.a. die Injektion der Ladungsträger über die metallischen Kontakte und der Ladungstransport im organischen Film selbst. Injektionsprozesse an den Kontakten sind hierbei von besonderem Interesse, da für optimale Effizienten der Bauelemente die Kontaktwiderstände an den Grenzflächen minimiert werden müssen. Allerdings sind solche internen Grenzflächen nur schwer zugänglich und daher nicht gut verstanden.

    Das Team um den cfaed-Forschungsgruppenleiter Dr. Frank Ortmann (Computational Nanoelectronics Group) konnte nun gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, dass sich der elektronische Transportmechanismus bei der Injektion in einen organischen Film durch das sogenannte Marcus-Hüpfmodell beschreiben lässt, welches aus der Physikalischen Chemie bekannt ist und auf den amerikanischen Chemiker Rudolph Arthur Marcus zurückgeht. Durch vergleichende theoretische und experimentelle Untersuchungen konnten die in der Marcus-Theorie vorhergesagten Transportregime zweifelsfrei identifiziert werden. „Die von R.A. Marcus im Zusammenhang mit Fragestellungen der chemischen Synthese in den 50er Jahren abgeleiteten Vorhersagen, insbesondere das sogenannte ‚Invertierte Marcus-Regime‘, konnten erst viele Jahrzehnte später durch systematische Experimente zu chemischen Reaktionen bestätigt werden. Für seine wichtigen theoretischen Beiträge hat R.A. Marcus den Chemie-Nobelpreis 1992 verliehen bekommen.“, so Ortmann.

    „Nun ist der Nachweis des ‚Invertierten Marcus-Regimes‘, bei dem eine höhere Spannung einen niedrigeren Strom erzeugt, erstmalig in einem organischen Transistor gelungen, bei dem die Injektions-Spannung aktiv kontrolliert werden kann“, führt Ortmann weiter fort. Dies führe zum besseren Verständnis elektronischer und optoelektronischer organischer Bauelemente allgemein.

    Die Publikation wurde am 7.5.2019 in der Fachzeitschrift „Nature Communications“ veröffentlicht.

    Pressebild:
    HiRes-Download: https://bit.ly/2Lulciy
    Schematische Darstellung des Bauelements: a – Schematischer Querschnitt des Bauelements. b – Arbeitsweise des Hot-Elektronen-Transistors. Elektronen werden durch Anlegen einer negativen Spannung zwischen Emitter und Basis in den molekularen Halbleiter injiziert und dort nachgewiesen. Diese heißen Elektronen befinden sich nicht im Gleichgewicht mit den thermischen Elektronen in der Basis, und können nicht durch eine höhere Temperatur beschrieben werden. Die Messungen können sowohl mit als auch ohne Kollektor-Basisspannung durchgeführt werden.

    Über die Computational Nanoelectronics Group:
    Die Forschungsgruppe am Center for Advancing Electronics Dresden (cfaed) unter Leitung von Dr. Frank Ortmann erforscht elektronische Eigenschaften und Ladungstransporteigenschaften neuartiger Halbleitermaterialien. Hierbei sind organische Halbleiter aktuell ein wichtiger Schwerpunkt der Arbeit, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Emmy Noether-Programms gefördert wird. Die Gruppe ist seit 2017 am cfaed angesiedelt.

    Informationen für Journalisten:
    Matthias Hahndorf
    Center for Advancing Electronics Dresden, TU Dresden
    Öffentlichkeitsarbeit
    Tel. +49 (0)351 463-42847
    Email: matthias.hahndorf@tu-dresden.de


    Wissenschaftliche Ansprechpartner:

    Dr. Frank Ortmann
    Center for Advancing Electronics Dresden, TU Dresden
    Gruppenleiter Computational Nanoelectronics Group
    Tel.: +49 351 463-43260
    E-Mail: frank.ortmann@tu-dresden.de


    Originalpublikation:

    Titel der Arbeit: “Tuning the charge flow between Marcus regimes in an organic thin-film device”
    Web: https://www.nature.com/articles/s41467-019-10114-2
    DOI: 10.1038/s41467-019-10114-2
    Autoren: A. Atxabal, T. Arnold, S. Parui, S. Hutsch, E. Zuccatti, R. Llopis, M. Cinchetti, F. Casanova, F. Ortmann, L.E. Hueso


    Weitere Informationen:

    https://cfaed.tu-dresden.de/ortmann-home


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Schematische Darstellung des Bauelements


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay