idw - Informationsdienst
Wissenschaft
Neurology: Publication in PNAS
27 June 2019 – Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) affecting brain and spinal cord. In collaboration with colleagues from the USA and Canada, a team of Düsseldorf-based researchers led by Prof. Dr. Patrick Küry from the Department of Neurology has discovered a new way in which nerve tissue is damaged by an endogenous retrovirus. They authors have published their findings in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Early disease stages of MS are primarily characterised by immune cell infiltration of the CNS. This causes inflammation that damages the so-called myelin sheaths. Myelin sheaths are electrically insulating structures established by specialised glial cells of the CNS, referred to as ‘oligodendrocytes’. These structures protect, nourish and stabilise axons, which transmit electrical signals between neurons.
There is a large therapeutic repertoire of immunomodulatory drugs available that can effectively target the inflammatory aspects of relapsing multiple sclerosis (RMS). But when MS progresses, damage accumulates which ultimately results in irreversible deficits and clinical disability. Unfortunately, despite decades of intense research disease progression is still untreatable as there are no therapies available that either prevent damage or repair injured axons.
In a new study published online on June 18 in the renowned journal PNAS a research team led by Prof. Dr. Patrick Küry from the Department of Neurology (chaired by Prof. Dr. Hans-Peter Hartung) has shed light on a novel axon damage mechanism which could be highly relevant for progressive MS (PMS) patients.
As outlined by the first author of this research paper, Dr. David Kremer, the envelope (ENV) protein of the pathogenic human endogenous retrovirus type W (pHERV-W) was found to be a major contributor to nerve damage in MS. In collaboration with research teams in Cleveland (OH, USA) and Montreal (CAN) the authors demonstrated that the ENV protein drives CNS resident microglial cells to contact and damage myelinated axons.
Alongside the scientific research into determining how the damage mechanism works, clinical developments aiming at neutralising the harmful ENV protein in MS patients have also progressed. Two clinical studies conducted under the supervision of Prof. Hartung have already successfully tested the ENV-neutralising antibody temelimab. MRI scans of the participants treated in the study showed reduced damage to the nerve tissue.
The Düsseldorf-based researchers and their colleagues can therefore explain why neurodegeneration is decreased in patients treated with temelimab. This antibody specifically binds to the ENV protein of the retrovirus and blocks its activity in the CNS. As stated by Prof. Hartung, future clinical studies in progressive MS patients will now have to demonstrate whether temelimab treatment can also improve clinical symptoms resulting from neurodegeneration.
Kremer D, Gruchot J, Weyers V, Oldemeier L, Göttle P, Healy L, Ho Jang J, Kang T Xu Y, Volsko C, Dutta R, Trapp BD, Perron H, Hartung HP, Küry P., pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis, Proc. Natl. Acad. Sci. U. S. A. 2019 Jun 18. pii: 201901283
DOI: 10.1073/pnas.1901283116
A microglial cell (green) contacts and attacks a myelinated axon (red). In the presence of the pHERV ...
HHU / Joel Gruchot / Patrick Küry
None
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Medicine
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).