idw - Informationsdienst
Wissenschaft
Ein großes Problem in der Krebstherapie ist die Resistenz gegenüber chemotherapeutischen Maßnahmen. Besonders bei wiederkehrenden Erkrankungen zeigen sich die Krebszellen gegenüber der Behandlung oft unempfindlich. Ein internationales Team um die Biochemiker Robert Ahrends von der Universität Wien und Jan Medenbach von der Universität Regensburg hat nun Chemo-Resistenzen als Folge einer speziellen zellulären Stressreaktion identifiziert, die bei den Krebszellen durch ungefaltete Proteine ausgelöst wird und Veränderungen im zellulären Stoffwechsel nach sich zieht. Den neuen Mechanismus stellen die Forscher*innen nun in "Nature Communications" vor.
Die Ursachen von Chemo-Resistenzen sind vielfältig und häufig nur unzureichend verstanden. In vielen Fällen scheint die sogenannte zelluläre Stressantwort beteiligt zu sein – also eine Reihe an genetischen Programmen, die es den Zellen ermöglichen, auch unter schlechten Bedingungen überleben zu können. Es braucht dringend ein detailliertes Verständnis dieser Stressantwort, um das Auftreten von Chemo-Resistenzen besser verstehen und neue Therapieansätze entwickeln zu können. "Unser Augenmerk galt insbesondere der Unfolded Protein Response, einer zellulären Stressreaktion, welche durch ungefaltete Proteine ausgelöst wird", sagt Robert Ahrends, Gruppenleiter am Institut für Analytische Chemie der Fakultät für Chemie.
Antwort auf ungefaltete Proteine
Die Unfolded Protein Response (UPR) ist dabei nicht nur an der Chemo-Resistenz und dem Fortschreiten von Krebsleiden beteiligt, sondern spielt auch bei einer Vielzahl weiterer Erkrankungen eine wichtige Rolle, z.B. bei Diabetes oder neurodegenerativen Krankheiten. Um die UPR molekularbiologisch genau zu erfassen, wendeten die Forscher modernste analytische Methoden in Rahmen eines Multiomics-Ansatzes an – also die Kombination von großen Datensätzen aus der Genetik, Protein- und-Stoffwechselforschung.
"Wir haben eine Reihe an Genen identifiziert, welche unter Stress aktiviert werden und helfen sollen, das Überleben der Zelle zu sichern", so dass Team: "Unter den identifizierten Molekülen finden sich nicht nur die bereits bekannten Gene der UPR, sondern auch eine Vielzahl Weiterer, die zuvor noch nicht mit der zellulären Stress-Antwort in Verbindung gebracht wurden und welche eine wichtige Funktion im zellulären Stoffwechsel ausüben."
Änderungen im Kohlenstoff-Stoffwechsel
Die Regulation dieser Gene unter Stress führt zu einem veränderten Folsäure-abhängigen Ein-Kohlenstoff-Metabolismus. Veränderungen des zellulären Stoffwechsels sind charakteristisch für viele Krebsleiden, wie auch bereits Nobelpreisträger Otto Warburg in den 1930er Jahren in seinen bahnbrechenden Arbeiten demonstrierte, und helfen den Krebszellen ihr schnelles Wachstum aufrecht zu erhalten.
Nachdem die Forscher*innen in Tumorzellen Stress ausgelöst hatten, beobachteten sie – über eine Veränderung des 1C-Metabolismus hinausgehend – auch eine vollständige Resistenz der Zellen gegenüber Chemotherapeutika, die eben diesen Stoffwechselweg angreifen. Dazu zählen Substanzen wie Methotrexat, das klinisch zur Behandlung von unterschiedlichen Krebsleiden und rheumatischen Erkrankungen breit eingesetzt wird. Detaillierte biochemische und genetische Untersuchungen bestätigten, dass es sich bei der entdeckten Stress-vermittelten Resistenz um einen neuartigen Mechanismus handelt, dessen genaue Entschlüsselung verbesserte Konzepte und Ansätze zur Überwindung von Resistenzen in der Krebstherapie erhoffen lässt.
Publikation in "Nature Communications":
Reich S, Nguyen CDL, Has C, Steltgens S, Soni H, Coman C, Freyberg M, Bichler A, Seifert N, Conrad D, Knobbe-Thomsen CB, Tews B, Toedt G, Ahrends R,* und Medenbach J*: A multi-omics analysis reveals the Unfolded Protein Response regulon and a role of eIF2-phosphorylation in resistance to folate-based anti-metabolites. DOI:10.1038/s41467-020-16747-y
Ass.-Prof. Dr. Robert Ahrends
Institut für Analytische Chemie
Universität Wien
1090 - Wien, Währinger Straße 38
+43-1-4277-52304
robert.ahrends@univie.ac.at
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Chemistry, Medicine
transregional, national
Research results, Transfer of Science or Research
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).